-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS -- [paper] import Base open Primitives namespace Paper /- [paper::ref_incr] -/ def ref_incr_fwd_back (x : I32) : Result I32 := x + (I32.ofInt 1 (by intlit)) /- [paper::test_incr] -/ def test_incr_fwd : Result Unit := do let x ← ref_incr_fwd_back (I32.ofInt 0 (by intlit)) if not (x = (I32.ofInt 1 (by intlit))) then Result.fail Error.panic else Result.ret () /- Unit test for [paper::test_incr] -/ #assert (test_incr_fwd == .ret ()) /- [paper::choose] -/ def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T := if b then Result.ret x else Result.ret y /- [paper::choose] -/ def choose_back (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) := if b then Result.ret (ret0, y) else Result.ret (x, ret0) /- [paper::test_choose] -/ def test_choose_fwd : Result Unit := do let z ← choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit)) let z0 ← z + (I32.ofInt 1 (by intlit)) if not (z0 = (I32.ofInt 1 (by intlit))) then Result.fail Error.panic else do let (x, y) ← choose_back I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit)) z0 if not (x = (I32.ofInt 1 (by intlit))) then Result.fail Error.panic else if not (y = (I32.ofInt 0 (by intlit))) then Result.fail Error.panic else Result.ret () /- Unit test for [paper::test_choose] -/ #assert (test_choose_fwd == .ret ()) /- [paper::List] -/ inductive list_t (T : Type) := | Cons : T → list_t T → list_t T | Nil : list_t T /- [paper::list_nth_mut] -/ divergent def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T := match l with | list_t.Cons x tl => if i = (U32.ofInt 0 (by intlit)) then Result.ret x else do let i0 ← i - (U32.ofInt 1 (by intlit)) list_nth_mut_fwd T tl i0 | list_t.Nil => Result.fail Error.panic /- [paper::list_nth_mut] -/ divergent def list_nth_mut_back (T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := match l with | list_t.Cons x tl => if i = (U32.ofInt 0 (by intlit)) then Result.ret (list_t.Cons ret0 tl) else do let i0 ← i - (U32.ofInt 1 (by intlit)) let tl0 ← list_nth_mut_back T tl i0 ret0 Result.ret (list_t.Cons x tl0) | list_t.Nil => Result.fail Error.panic /- [paper::sum] -/ divergent def sum_fwd (l : list_t I32) : Result I32 := match l with | list_t.Cons x tl => do let i ← sum_fwd tl x + i | list_t.Nil => Result.ret (I32.ofInt 0 (by intlit)) /- [paper::test_nth] -/ def test_nth_fwd : Result Unit := do let l := list_t.Nil let l0 := list_t.Cons (I32.ofInt 3 (by intlit)) l let l1 := list_t.Cons (I32.ofInt 2 (by intlit)) l0 let x ← list_nth_mut_fwd I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1) (U32.ofInt 2 (by intlit)) let x0 ← x + (I32.ofInt 1 (by intlit)) let l2 ← list_nth_mut_back I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1) (U32.ofInt 2 (by intlit)) x0 let i ← sum_fwd l2 if not (i = (I32.ofInt 7 (by intlit))) then Result.fail Error.panic else Result.ret () /- Unit test for [paper::test_nth] -/ #assert (test_nth_fwd == .ret ()) /- [paper::call_choose] -/ def call_choose_fwd (p : (U32 × U32)) : Result U32 := do let (px, py) := p let pz ← choose_fwd U32 true px py let pz0 ← pz + (U32.ofInt 1 (by intlit)) let (px0, _) ← choose_back U32 true px py pz0 Result.ret px0 end Paper