-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS -- [hashmap]: function definitions import Base import Hashmap.Types open Primitives namespace hashmap /- [hashmap::hash_key] -/ def hash_key_fwd (k : Usize) : Result Usize := Result.ret k /- [hashmap::HashMap::{0}::allocate_slots] -/ divergent def HashMap.allocate_slots_loop_fwd (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) := if n > (Usize.ofInt 0 (by intlit)) then do let slots0 ← vec_push_back (list_t T) slots list_t.Nil let n0 ← n - (Usize.ofInt 1 (by intlit)) HashMap.allocate_slots_loop_fwd T slots0 n0 else Result.ret slots /- [hashmap::HashMap::{0}::allocate_slots] -/ def HashMap.allocate_slots_fwd (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) := HashMap.allocate_slots_loop_fwd T slots n /- [hashmap::HashMap::{0}::new_with_capacity] -/ def HashMap.new_with_capacity_fwd (T : Type) (capacity : Usize) (max_load_dividend : Usize) (max_load_divisor : Usize) : Result (hash_map_t T) := do let v := vec_new (list_t T) let slots ← HashMap.allocate_slots_fwd T v capacity let i ← capacity * max_load_dividend let i0 ← i / max_load_divisor Result.ret { hash_map_num_entries := (Usize.ofInt 0 (by intlit)), hash_map_max_load_factor := (max_load_dividend, max_load_divisor), hash_map_max_load := i0, hash_map_slots := slots } /- [hashmap::HashMap::{0}::new] -/ def HashMap.new_fwd (T : Type) : Result (hash_map_t T) := HashMap.new_with_capacity_fwd T (Usize.ofInt 32 (by intlit)) (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) /- [hashmap::HashMap::{0}::clear] -/ divergent def HashMap.clear_loop_fwd_back (T : Type) (slots : Vec (list_t T)) (i : Usize) : Result (Vec (list_t T)) := let i0 := vec_len (list_t T) slots if i < i0 then do let i1 ← i + (Usize.ofInt 1 (by intlit)) let slots0 ← vec_index_mut_back (list_t T) slots i list_t.Nil HashMap.clear_loop_fwd_back T slots0 i1 else Result.ret slots /- [hashmap::HashMap::{0}::clear] -/ def HashMap.clear_fwd_back (T : Type) (self : hash_map_t T) : Result (hash_map_t T) := do let v ← HashMap.clear_loop_fwd_back T self.hash_map_slots (Usize.ofInt 0 (by intlit)) Result.ret { self with hash_map_num_entries := (Usize.ofInt 0 (by intlit)), hash_map_slots := v } /- [hashmap::HashMap::{0}::len] -/ def HashMap.len_fwd (T : Type) (self : hash_map_t T) : Result Usize := Result.ret self.hash_map_num_entries /- [hashmap::HashMap::{0}::insert_in_list] -/ divergent def HashMap.insert_in_list_loop_fwd (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool := match ls with | list_t.Cons ckey cvalue tl => if ckey = key then Result.ret false else HashMap.insert_in_list_loop_fwd T key value tl | list_t.Nil => Result.ret true /- [hashmap::HashMap::{0}::insert_in_list] -/ def HashMap.insert_in_list_fwd (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool := HashMap.insert_in_list_loop_fwd T key value ls /- [hashmap::HashMap::{0}::insert_in_list] -/ divergent def HashMap.insert_in_list_loop_back (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) := match ls with | list_t.Cons ckey cvalue tl => if ckey = key then Result.ret (list_t.Cons ckey value tl) else do let tl0 ← HashMap.insert_in_list_loop_back T key value tl Result.ret (list_t.Cons ckey cvalue tl0) | list_t.Nil => let l := list_t.Nil Result.ret (list_t.Cons key value l) /- [hashmap::HashMap::{0}::insert_in_list] -/ def HashMap.insert_in_list_back (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) := HashMap.insert_in_list_loop_back T key value ls /- [hashmap::HashMap::{0}::insert_no_resize] -/ def HashMap.insert_no_resize_fwd_back (T : Type) (self : hash_map_t T) (key : Usize) (value : T) : Result (hash_map_t T) := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let inserted ← HashMap.insert_in_list_fwd T key value l if inserted then do let i0 ← self.hash_map_num_entries + (Usize.ofInt 1 (by intlit)) let l0 ← HashMap.insert_in_list_back T key value l let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 Result.ret { self with hash_map_num_entries := i0, hash_map_slots := v } else do let l0 ← HashMap.insert_in_list_back T key value l let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 Result.ret { self with hash_map_slots := v } /- [core::num::u32::{9}::MAX] -/ def core_num_u32_max_body : Result U32 := Result.ret (U32.ofInt 4294967295 (by intlit)) def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) /- [hashmap::HashMap::{0}::move_elements_from_list] -/ divergent def HashMap.move_elements_from_list_loop_fwd_back (T : Type) (ntable : hash_map_t T) (ls : list_t T) : Result (hash_map_t T) := match ls with | list_t.Cons k v tl => do let ntable0 ← HashMap.insert_no_resize_fwd_back T ntable k v HashMap.move_elements_from_list_loop_fwd_back T ntable0 tl | list_t.Nil => Result.ret ntable /- [hashmap::HashMap::{0}::move_elements_from_list] -/ def HashMap.move_elements_from_list_fwd_back (T : Type) (ntable : hash_map_t T) (ls : list_t T) : Result (hash_map_t T) := HashMap.move_elements_from_list_loop_fwd_back T ntable ls /- [hashmap::HashMap::{0}::move_elements] -/ divergent def HashMap.move_elements_loop_fwd_back (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : Result ((hash_map_t T) × (Vec (list_t T))) := let i0 := vec_len (list_t T) slots if i < i0 then do let l ← vec_index_mut_fwd (list_t T) slots i let ls := mem_replace_fwd (list_t T) l list_t.Nil let ntable0 ← HashMap.move_elements_from_list_fwd_back T ntable ls let i1 ← i + (Usize.ofInt 1 (by intlit)) let l0 := mem_replace_back (list_t T) l list_t.Nil let slots0 ← vec_index_mut_back (list_t T) slots i l0 HashMap.move_elements_loop_fwd_back T ntable0 slots0 i1 else Result.ret (ntable, slots) /- [hashmap::HashMap::{0}::move_elements] -/ def HashMap.move_elements_fwd_back (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : Result ((hash_map_t T) × (Vec (list_t T))) := HashMap.move_elements_loop_fwd_back T ntable slots i /- [hashmap::HashMap::{0}::try_resize] -/ def HashMap.try_resize_fwd_back (T : Type) (self : hash_map_t T) : Result (hash_map_t T) := do let max_usize ← Scalar.cast .Usize core_num_u32_max_c let capacity := vec_len (list_t T) self.hash_map_slots let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) let (i, i0) := self.hash_map_max_load_factor let i1 ← n1 / i if capacity <= i1 then do let i2 ← capacity * (Usize.ofInt 2 (by intlit)) let ntable ← HashMap.new_with_capacity_fwd T i2 i i0 let (ntable0, _) ← HashMap.move_elements_fwd_back T ntable self.hash_map_slots (Usize.ofInt 0 (by intlit)) Result.ret { ntable0 with hash_map_num_entries := self.hash_map_num_entries, hash_map_max_load_factor := (i, i0) } else Result.ret { self with hash_map_max_load_factor := (i, i0) } /- [hashmap::HashMap::{0}::insert] -/ def HashMap.insert_fwd_back (T : Type) (self : hash_map_t T) (key : Usize) (value : T) : Result (hash_map_t T) := do let self0 ← HashMap.insert_no_resize_fwd_back T self key value let i ← HashMap.len_fwd T self0 if i > self0.hash_map_max_load then HashMap.try_resize_fwd_back T self0 else Result.ret self0 /- [hashmap::HashMap::{0}::contains_key_in_list] -/ divergent def HashMap.contains_key_in_list_loop_fwd (T : Type) (key : Usize) (ls : list_t T) : Result Bool := match ls with | list_t.Cons ckey t tl => if ckey = key then Result.ret true else HashMap.contains_key_in_list_loop_fwd T key tl | list_t.Nil => Result.ret false /- [hashmap::HashMap::{0}::contains_key_in_list] -/ def HashMap.contains_key_in_list_fwd (T : Type) (key : Usize) (ls : list_t T) : Result Bool := HashMap.contains_key_in_list_loop_fwd T key ls /- [hashmap::HashMap::{0}::contains_key] -/ def HashMap.contains_key_fwd (T : Type) (self : hash_map_t T) (key : Usize) : Result Bool := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots let hash_mod ← hash % i let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod HashMap.contains_key_in_list_fwd T key l /- [hashmap::HashMap::{0}::get_in_list] -/ divergent def HashMap.get_in_list_loop_fwd (T : Type) (key : Usize) (ls : list_t T) : Result T := match ls with | list_t.Cons ckey cvalue tl => if ckey = key then Result.ret cvalue else HashMap.get_in_list_loop_fwd T key tl | list_t.Nil => Result.fail Error.panic /- [hashmap::HashMap::{0}::get_in_list] -/ def HashMap.get_in_list_fwd (T : Type) (key : Usize) (ls : list_t T) : Result T := HashMap.get_in_list_loop_fwd T key ls /- [hashmap::HashMap::{0}::get] -/ def HashMap.get_fwd (T : Type) (self : hash_map_t T) (key : Usize) : Result T := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots let hash_mod ← hash % i let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod HashMap.get_in_list_fwd T key l /- [hashmap::HashMap::{0}::get_mut_in_list] -/ divergent def HashMap.get_mut_in_list_loop_fwd (T : Type) (ls : list_t T) (key : Usize) : Result T := match ls with | list_t.Cons ckey cvalue tl => if ckey = key then Result.ret cvalue else HashMap.get_mut_in_list_loop_fwd T tl key | list_t.Nil => Result.fail Error.panic /- [hashmap::HashMap::{0}::get_mut_in_list] -/ def HashMap.get_mut_in_list_fwd (T : Type) (ls : list_t T) (key : Usize) : Result T := HashMap.get_mut_in_list_loop_fwd T ls key /- [hashmap::HashMap::{0}::get_mut_in_list] -/ divergent def HashMap.get_mut_in_list_loop_back (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) := match ls with | list_t.Cons ckey cvalue tl => if ckey = key then Result.ret (list_t.Cons ckey ret0 tl) else do let tl0 ← HashMap.get_mut_in_list_loop_back T tl key ret0 Result.ret (list_t.Cons ckey cvalue tl0) | list_t.Nil => Result.fail Error.panic /- [hashmap::HashMap::{0}::get_mut_in_list] -/ def HashMap.get_mut_in_list_back (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) := HashMap.get_mut_in_list_loop_back T ls key ret0 /- [hashmap::HashMap::{0}::get_mut] -/ def HashMap.get_mut_fwd (T : Type) (self : hash_map_t T) (key : Usize) : Result T := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod HashMap.get_mut_in_list_fwd T l key /- [hashmap::HashMap::{0}::get_mut] -/ def HashMap.get_mut_back (T : Type) (self : hash_map_t T) (key : Usize) (ret0 : T) : Result (hash_map_t T) := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let l0 ← HashMap.get_mut_in_list_back T l key ret0 let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 Result.ret { self with hash_map_slots := v } /- [hashmap::HashMap::{0}::remove_from_list] -/ divergent def HashMap.remove_from_list_loop_fwd (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) := match ls with | list_t.Cons ckey t tl => if ckey = key then let mv_ls := mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil match mv_ls with | list_t.Cons i cvalue tl0 => Result.ret (Option.some cvalue) | list_t.Nil => Result.fail Error.panic else HashMap.remove_from_list_loop_fwd T key tl | list_t.Nil => Result.ret Option.none /- [hashmap::HashMap::{0}::remove_from_list] -/ def HashMap.remove_from_list_fwd (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) := HashMap.remove_from_list_loop_fwd T key ls /- [hashmap::HashMap::{0}::remove_from_list] -/ divergent def HashMap.remove_from_list_loop_back (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) := match ls with | list_t.Cons ckey t tl => if ckey = key then let mv_ls := mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil match mv_ls with | list_t.Cons i cvalue tl0 => Result.ret tl0 | list_t.Nil => Result.fail Error.panic else do let tl0 ← HashMap.remove_from_list_loop_back T key tl Result.ret (list_t.Cons ckey t tl0) | list_t.Nil => Result.ret list_t.Nil /- [hashmap::HashMap::{0}::remove_from_list] -/ def HashMap.remove_from_list_back (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) := HashMap.remove_from_list_loop_back T key ls /- [hashmap::HashMap::{0}::remove] -/ def HashMap.remove_fwd (T : Type) (self : hash_map_t T) (key : Usize) : Result (Option T) := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let x ← HashMap.remove_from_list_fwd T key l match x with | Option.none => Result.ret Option.none | Option.some x0 => do let _ ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit)) Result.ret (Option.some x0) /- [hashmap::HashMap::{0}::remove] -/ def HashMap.remove_back (T : Type) (self : hash_map_t T) (key : Usize) : Result (hash_map_t T) := do let hash ← hash_key_fwd key let i := vec_len (list_t T) self.hash_map_slots let hash_mod ← hash % i let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod let x ← HashMap.remove_from_list_fwd T key l match x with | Option.none => do let l0 ← HashMap.remove_from_list_back T key l let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 Result.ret { self with hash_map_slots := v } | Option.some x0 => do let i0 ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit)) let l0 ← HashMap.remove_from_list_back T key l let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 Result.ret { self with hash_map_num_entries := i0, hash_map_slots := v } /- [hashmap::test1] -/ def test1_fwd : Result Unit := do let hm ← HashMap.new_fwd U64 let hm0 ← HashMap.insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit)) (U64.ofInt 42 (by intlit)) let hm1 ← HashMap.insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit)) (U64.ofInt 18 (by intlit)) let hm2 ← HashMap.insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit)) (U64.ofInt 138 (by intlit)) let hm3 ← HashMap.insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) (U64.ofInt 256 (by intlit)) let i ← HashMap.get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) if not (i = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do let hm4 ← HashMap.get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit)) (U64.ofInt 56 (by intlit)) let i0 ← HashMap.get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) if not (i0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do let x ← HashMap.remove_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) match x with | Option.none => Result.fail Error.panic | Option.some x0 => if not (x0 = (U64.ofInt 56 (by intlit))) then Result.fail Error.panic else do let hm5 ← HashMap.remove_back U64 hm4 (Usize.ofInt 1024 (by intlit)) let i1 ← HashMap.get_fwd U64 hm5 (Usize.ofInt 0 (by intlit)) if not (i1 = (U64.ofInt 42 (by intlit))) then Result.fail Error.panic else do let i2 ← HashMap.get_fwd U64 hm5 (Usize.ofInt 128 (by intlit)) if not (i2 = (U64.ofInt 18 (by intlit))) then Result.fail Error.panic else do let i3 ← HashMap.get_fwd U64 hm5 (Usize.ofInt 1056 (by intlit)) if not (i3 = (U64.ofInt 256 (by intlit))) then Result.fail Error.panic else Result.ret () /- Unit test for [hashmap::test1] -/ #assert (test1_fwd == .ret ()) end hashmap