import Base import Demo.Demo open Primitives open Result namespace demo #check U32.add_spec -- @[pspec] theorem mul2_add1_spec (x : U32) (h : 2 * ↑x + 1 ≤ U32.max) : ∃ y, mul2_add1 x = ok y ∧ ↑y = 2 * ↑x + (1 : Int) := by rw [mul2_add1] progress with U32.add_spec as ⟨ i ⟩ progress as ⟨ i' ⟩ simp; scalar_tac theorem use_mul2_add1_spec (x : U32) (y : U32) (h : 2 * ↑x + 1 + ↑y ≤ U32.max) : ∃ z, use_mul2_add1 x y = ok z ∧ ↑z = 2 * ↑x + (1 : Int) + ↑y := by rw [use_mul2_add1] progress with mul2_add1_spec as ⟨ i ⟩ progress as ⟨ i' ⟩ simp; scalar_tac open CList @[simp] def CList.to_list {α : Type} (x : CList α) : List α := match x with | CNil => [] | CCons hd tl => hd :: tl.to_list theorem list_nth_spec {T : Type} [Inhabited T] (l : CList T) (i : U32) (h : ↑i < l.to_list.len) : ∃ x, list_nth T l i = ok x ∧ x = l.to_list.index ↑i := by rw [list_nth] match l with | CNil => simp_all; scalar_tac | CCons hd tl => simp_all if hi: i = 0u32 then simp_all else simp_all progress as ⟨ i1 ⟩ progress as ⟨ x ⟩ simp_all theorem i32_id_spec (x : I32) (h : 0 ≤ x.val) : ∃ y, i32_id x = ok y ∧ x.val = y.val := by rw [i32_id] if hx : x = 0i32 then simp_all else simp_all progress as ⟨ x1 ⟩ progress as ⟨ x2 ⟩ progress simp_all termination_by x.val.toNat decreasing_by scalar_decr_tac theorem list_tail_spec {T : Type} [Inhabited T] (l : CList T) : ∃ back, list_tail T l = ok (CList.CNil, back) ∧ ∀ tl', ∃ l', back tl' = ok l' ∧ l'.to_list = l.to_list ++ tl'.to_list := by rw [list_tail] match l with | CNil => simp_all | CCons hd tl => simp_all progress as ⟨ back ⟩ simp -- Proving the backward function intro tl' progress simp_all end demo