(** Properties about the hashmap *) module Hashmap.Properties open Primitives open FStar.List.Tot open FStar.Mul open Hashmap.Types open Hashmap.Clauses open Hashmap.Funs // To help with the proofs module InteractiveHelpers = FStar.InteractiveHelpers #set-options "--z3rlimit 50 --fuel 0 --ifuel 1" /// The proofs actually caused a lot more trouble than expected, because: /// - we are blind when doing the proofs. After a very intensive use of F* I got /// used to it meaning I can *do* proofs in F*, but it still takes me a tremendous /// amout of energy to visualize the context in my head and, for instance, /// properly instantiate the lemmas or insert the necessary assertions in the code. /// I actually often write assertions that I assume just to *check* that those /// assertions make the proofs pass and are thus indeed the ones I want to prove, /// which is something very specific to working with F*. /// - F* is extremely bad at reasoning with quantifiers, which is made worse by /// the fact we are blind when making proofs. This forced me to be extremely /// careful about the way I wrote the specs/invariants (by writing "functional" /// specs and invariants, mostly, so as not to manipulate quantifiers) /// - F* doesn't encode closures properly, the result being that it is very /// awkward to reason about functions like `map` or `find`, because we have /// to introduce auxiliary definitions for the parameters we give to those /// functions (if we use anonymous lambda functions, we're screwed by the /// encoding). /// - we can't easily prove intermediate results which require a recursive proofs /// inside of other proofs, meaning that whenever we need such a result we need /// to write an intermediate lemma, which is extremely cumbersome. /// /// The result is that I had to poor a lot more thinking than I expected in the below /// proofs, in particular to: /// - write invariants and specs that I could *manage* in F* /// - subdivide all the theorems into very small, modular lemmas that I could reason /// about independently, in a small context, and with quick responses from F*. /// /// Note that in a theorem prover with tactics, most of the below proof would have /// been extremely straightforward. (*** List lemmas *) val index_append_lem (#a : Type0) (ls0 ls1 : list a) (i : nat{i < length ls0 + length ls1}) : Lemma ( (i < length ls0 ==> index (ls0 @ ls1) i == index ls0 i) /\ (i >= length ls0 ==> index (ls0 @ ls1) i == index ls1 (i - length ls0))) [SMTPat (index (ls0 @ ls1) i)] #push-options "--fuel 1" let rec index_append_lem #a ls0 ls1 i = match ls0 with | [] -> () | x :: ls0' -> if i = 0 then () else index_append_lem ls0' ls1 (i-1) #pop-options val index_map_lem (#a #b: Type0) (f : a -> Tot b) (ls : list a) (i : nat{i < length ls}) : Lemma ( index (map f ls) i == f (index ls i)) [SMTPat (index (map f ls) i)] #push-options "--fuel 1" let rec index_map_lem #a #b f ls i = match ls with | [] -> () | x :: ls' -> if i = 0 then () else index_map_lem f ls' (i-1) #pop-options // TODO: remove? // Returns the index of the value which satisfies the predicate val find_index : #a:Type -> f:(a -> Tot bool) -> ls:list a{Some? (find f ls)} -> Tot (i:nat{ i < length ls /\ begin match find f ls with | None -> False | Some x -> x == index ls i end}) #push-options "--fuel 1" let rec find_index #a f ls = match ls with | [] -> assert(False); 0 | x :: ls' -> if f x then 0 else 1 + find_index f ls' #pop-options (*** Lemmas about Primitives *) /// TODO: move those lemmas // TODO: rename to 'insert'? val list_update_index_dif_lem (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) (j : nat{j < length ls}) : Lemma (requires (j <> i)) (ensures (index (list_update ls i x) j == index ls j)) [SMTPat (index (list_update ls i x) j)] #push-options "--fuel 1" let rec list_update_index_dif_lem #a ls i x j = match ls with | x' :: ls -> if i = 0 then () else if j = 0 then () else list_update_index_dif_lem ls (i-1) x (j-1) #pop-options val map_list_update_lem (#a #b: Type0) (f : a -> Tot b) (ls : list a) (i : nat{i < length ls}) (x : a) : Lemma (list_update (map f ls) i (f x) == map f (list_update ls i x)) [SMTPat (list_update (map f ls) i (f x))] #push-options "--fuel 1" let rec map_list_update_lem #a #b f ls i x = match ls with | x' :: ls' -> if i = 0 then () else map_list_update_lem f ls' (i-1) x #pop-options val length_flatten_update : #a:Type -> ls:list (list a) -> i:nat{i < length ls} -> x:list a -> Lemma ( // length (flatten (list_update ls i x)) = // length (flatten ls) - length (index ls i) + length x length (flatten (list_update ls i x)) + length (index ls i) = length (flatten ls) + length x) #push-options "--fuel 1" let rec length_flatten_update #a ls i x = match ls with | x' :: ls' -> assert(flatten ls == x' @ flatten ls'); // Triggers patterns assert(length (flatten ls) == length x' + length (flatten ls')); if i = 0 then begin let ls1 = x :: ls' in assert(list_update ls i x == ls1); assert(flatten ls1 == x @ flatten ls'); // Triggers patterns assert(length (flatten ls1) == length x + length (flatten ls')); () end else begin length_flatten_update ls' (i-1) x; let ls1 = x' :: list_update ls' (i-1) x in assert(flatten ls1 == x' @ flatten (list_update ls' (i-1) x)) // Triggers patterns end #pop-options (*** Utilities *) // TODO: filter the utilities val find_update: #a:Type -> f:(a -> Tot bool) -> ls:list a -> x:a -> ls':list a{length ls' == length ls} #push-options "--fuel 1" let rec find_update #a f ls x = match ls with | [] -> [] | hd::tl -> if f hd then x :: tl else hd :: find_update f tl x #pop-options val pairwise_distinct : #a:eqtype -> ls:list a -> Tot bool let rec pairwise_distinct (#a : eqtype) (ls : list a) : Tot bool = match ls with | [] -> true | x :: ls' -> List.Tot.for_all (fun y -> x <> y) ls' && pairwise_distinct ls' val for_allP: #a:Type -> f:(a -> Tot Type0) -> list a -> Tot Type0 let rec for_allP (f : 'a -> Tot Type0) (l : list 'a) : Tot Type0 = match l with | [] -> True | hd::tl -> f hd /\ for_allP f tl val for_all_i_aux: #a:Type -> f:(nat -> a -> Tot bool) -> list a -> nat -> Tot bool let rec for_all_i_aux (f : nat -> 'a -> Tot bool) (l : list 'a) (i : nat) : Tot bool = match l with | [] -> true | hd::tl -> f i hd && for_all_i_aux f tl (i+1) val for_all_i: #a:Type -> f:(nat -> a -> Tot bool) -> list a -> Tot bool let for_all_i (f : nat -> 'a -> Tot bool) (l : list 'a) : Tot bool = for_all_i_aux f l 0 val pairwise_relP : #a:Type -> pred:(a -> a -> Tot Type0) -> ls:list a -> Tot Type0 let rec pairwise_relP #a pred ls = match ls with | [] -> True | x :: ls' -> for_allP (pred x) ls' /\ pairwise_relP pred ls' val pairwise_rel : #a:Type -> pred:(a -> a -> Tot bool) -> ls:list a -> Tot bool let rec pairwise_rel #a pred ls = match ls with | [] -> true | x :: ls' -> for_all (pred x) ls' && pairwise_rel pred ls' /// The lack of lemmas about list manipulation is really annoying... #push-options "--fuel 1" let rec flatten_append (#a : Type) (l1 l2: list (list a)) : Lemma (flatten (l1 @ l2) == flatten l1 @ flatten l2) = match l1 with | [] -> () | x :: l1' -> flatten_append l1' l2; append_assoc x (flatten l1') (flatten l2) #pop-options /// We don't use anonymous functions as parameters to other functions, but rather /// introduce auxiliary functions instead: otherwise we can't reason (because /// F*'s encoding to the SMT is imprecise for functions) let fst_is_disctinct (#a : eqtype) (#b : Type0) (p0 : a & b) (p1 : a & b) : Type0 = fst p0 <> fst p1 (*** Invariants, models *) (* /// "Natural" length function for [list_t] /// TODO: remove? we can reason simply with [list_t_v] let rec list_t_len (#t : Type0) (ls : list_t t) : nat = match ls with | ListNil -> 0 | ListCons _ _ tl -> 1 + list_t_len tl *) (* /// "Natural" append function for [list_t] /// TODO: remove? we can reason simply with [list_t_v] #push-options "--fuel 1" let rec list_t_append (#t : Type0) (ls0 ls1 : list_t t) : ls:list_t t{list_t_len ls = list_t_len ls0 + list_t_len ls1} = match ls0 with | ListNil -> ls1 | ListCons x v tl -> ListCons x v (list_t_append tl ls1) #pop-options *) /// The "key" type type key : eqtype = usize type hash : eqtype = usize type binding (t : Type0) = key & t type slots_t (t : Type0) = vec (list_t t) /// We represent hash maps as associative lists type assoc_list (t : Type0) = list (binding t) /// Representation function for [list_t] let rec list_t_v (#t : Type0) (ls : list_t t) : assoc_list t = match ls with | ListNil -> [] | ListCons k v tl -> (k,v) :: list_t_v tl let list_t_len (#t : Type0) (ls : list_t t) : nat = length (list_t_v ls) let list_t_index (#t : Type0) (ls : list_t t) (i : nat{i < list_t_len ls}) : binding t = index (list_t_v ls) i // TODO: use more type slot_s (t : Type0) = list (binding t) type slots_s (t : Type0) = list (slot_s t) // TODO: use more type slot_t (t : Type0) = list_t t let slot_t_v (#t : Type0) (slot : slot_t t) : slot_s t = list_t_v slot /// Representation function for the slots. let slots_t_v (#t : Type0) (slots : slots_t t) : slots_s t = map slot_t_v slots /// TODO: remove? let slots_t_al_v (#t : Type0) (slots : slots_t t) : assoc_list t = flatten (map list_t_v slots) /// High-level type for the hash-map, seen as a list of associative lists (one /// list per slot) type hash_map_slots_s t = list (slot_s t) /// High-level type for the hash-map, seen as a an associative list type hash_map_s t = assoc_list t // TODO: move let is_pos_usize (n : nat) : Type0 = 0 < n /\ n <= usize_max // 'nes': "non-empty slots" // TODO: use more type hash_map_slots_s_nes (t : Type0) : Type0 = hm:hash_map_slots_s t{is_pos_usize (length hm)} /// Representation function for [hash_map_t] as a list of slots let hash_map_t_slots_v (#t : Type0) (hm : hash_map_t t) : hash_map_slots_s t = map list_t_v hm.hash_map_slots /// Representation function for [hash_map_t] let hash_map_t_v (#t : Type0) (hm : hash_map_t t) : hash_map_s t = flatten (hash_map_t_slots_v hm) // 'nes': "non-empty slots" // TODO: use more type hash_map_t_nes (t : Type0) : Type0 = hm:hash_map_t t{is_pos_usize (length hm.hash_map_slots)} let hash_key (k : key) : hash = Return?.v (hash_key_fwd k) let hash_mod_key (k : key) (len : usize{len > 0}) : hash = (hash_key k) % len let same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b = k // We take a [nat] instead of a [hash] on purpose let same_hash_mod_key (#t : Type0) (len : usize{len > 0}) (h : nat) (b : binding t) : bool = hash_mod_key (fst b) len = h // We take a [nat] instead of a [hash] on purpose (*let same_hash (#t : Type0) (h : nat) (b : binding t) : bool = hash_key (fst b) = h *) let binding_neq (#t : Type0) (b0 b1 : binding t) : bool = fst b0 <> fst b1 let has_same_binding (#t : Type0) (al : assoc_list t) ((k,v) : binding t) : Type0 = match find (same_key k) al with | None -> False | Some (k',v') -> v' == v let hash_map_t_mem_s (#t : Type0) (hm : hash_map_t t) (k : key) : bool = existsb (same_key k) (hash_map_t_v hm) let hash_map_t_len_s (#t : Type0) (hm : hash_map_t t) : nat = hm.hash_map_num_entries let slot_find (#t : Type0) (k : key) (slot : list (binding t)) : option t = match find (same_key k) slot with | None -> None | Some (_, v) -> Some v let slot_t_find_s (#t : Type0) (k : key) (slot : list_t t) : option t = match find (same_key k) (list_t_v slot) with | None -> None | Some (_, v) -> Some v // This is a simpler version of the "find" function, which captures the essence // of what happens and operates on [hash_map_slots_s]. // TODO: useful? let hash_map_slots_s_find (#t : Type0) (hm : hash_map_slots_s t{length hm <= usize_max /\ length hm > 0}) (k : key) : option t = let i = hash_mod_key k (length hm) in let slot = index hm i in slot_find k slot let hash_map_slots_s_len (#t : Type0) (hm : hash_map_slots_s t{length hm <= usize_max /\ length hm > 0}) : nat = length (flatten hm) // Same as above, but operates on [hash_map_t] // Note that we don't reuse the above function on purpose: converting to a // [hash_map_slots_s] then looking up an element is not the same as what we // wrote below. let hash_map_t_find_s (#t : Type0) (hm : hash_map_t t{length hm.hash_map_slots > 0}) (k : key) : option t = let slots = hm.hash_map_slots in let i = hash_mod_key k (length slots) in let slot = index slots i in slot_t_find_s k slot (*let hash_map_t_find_s (#t : Type0) (hm : hash_map_t t) (k : key) : option t = match find (same_key k) (hash_map_t_v hm) with | None -> None | Some (_, v) -> Some v*) /// Auxiliary function stating that two associative lists are "equivalent" let assoc_list_equiv (#t : Type0) (al0 al1 : assoc_list t) : Type0 = // All the bindings in al0 can be found in al1 for_allP (has_same_binding al1) al0 /\ // And the reverse is true for_allP (has_same_binding al0) al1 (* // Introducing auxiliary definitions to help deal with the quantifiers let not_same_keys_at_j_k (#t : Type0) (ls : list_t t) (j:nat{j < list_t_len ls}) (k:nat{k < list_t_len ls}) : Type0 = fst (list_t_index ls j) <> fst (list_t_index ls k) (*let not_same_keys_at_j_k (#t : Type0) (ls : list_t t) (j:nat{j < list_t_len ls}) (k:nat{k < list_t_len ls}) : Type0 = fst (list_t_index ls j) <> fst (list_t_index ls k)*) type slot_t_inv_hash_key_f (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) = (j:nat{j < list_t_len slot}) -> Lemma (hash_mod_key (fst (list_t_index slot j)) len = i) [SMTPat (hash_mod_key (fst (list_t_index slot j)) len)] type slot_t_inv_not_same_keys_f (#t : Type0) (i : usize) (slot : list_t t) = (j:nat{j < list_t_len slot}) -> (k:nat{k < list_t_len slot /\ j < k}) -> Lemma (not_same_keys_at_j_k slot j k) [SMTPat (not_same_keys_at_j_k slot j k)] *) (**) /// Invariants for the slots let slot_s_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list (binding t)) : bool = // All the bindings are in the proper slot for_all (same_hash_mod_key len i) slot && // All the keys are pairwise distinct pairwise_rel binding_neq slot let slot_t_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) : bool = // All the bindings are in the proper slot for_all (same_hash_mod_key len i) (list_t_v slot) && // All the keys are pairwise distinct pairwise_rel binding_neq (list_t_v slot) (* /// Invariants for the slots /// Rk.: making sure the quantifiers instantiations work was painful. As always. let slot_t_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) : Type0 = // All the hashes of the keys are equal to the current hash (forall (j:nat{j < list_t_len slot}). {:pattern (list_t_index slot j)} hash_mod_key (fst (list_t_index slot j)) len = i) /\ // All the keys are pairwise distinct (forall (j:nat{j < list_t_len slot}) (k:nat{k < list_t_len slot /\ j < k}). {:pattern not_same_keys_at_j_k slot j k} k <> j ==> not_same_keys_at_j_k slot j k) /// Helpers to deal with the quantifier proofs let slot_t_inv_to_funs (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t{slot_t_inv len i slot}) : slot_t_inv_hash_key_f len i slot & slot_t_inv_not_same_keys_f i slot = let f : slot_t_inv_hash_key_f len i slot = fun j -> () in let g : slot_t_inv_not_same_keys_f i slot = fun j k -> () in (f, g) let slot_t_inv_from_funs_lem (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) (f : slot_t_inv_hash_key_f len i slot) (g : slot_t_inv_not_same_keys_f i slot) : Lemma (slot_t_inv len i slot) = // Dealing with quantifiers is annoying, like always let f' (j:nat{j < list_t_len slot}) : Lemma (hash_mod_key (fst (list_t_index slot j)) len = i) [SMTPat (hash_mod_key (fst (list_t_index slot j)) len)] = f j in let g' (j:nat{j < list_t_len slot}) (k:nat{k < list_t_len slot /\ j < k}) : Lemma (not_same_keys_at_j_k slot j k) [SMTPat (not_same_keys_at_j_k slot j k)] = g j k in () *) let slots_s_inv (#t : Type0) (slots : slots_s t{length slots <= usize_max}) : Type0 = forall(i:nat{i < length slots}). {:pattern index slots i} slot_s_inv (length slots) i (index slots i) let slots_t_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Type0 = forall(i:nat{i < length slots}). {:pattern index slots i} slot_t_inv (length slots) i (index slots i) (* type slots_t_inv_f (#t : Type0) (slots : slots_t t{length slots <= usize_max}) = (i:nat{i < length slots}) -> Lemma (slot_t_inv (length slots) i (index slots i)) let slots_t_inv_to_fun (#t : Type0) (slots : slots_t t{length slots <= usize_max /\ slots_t_inv slots}) : slots_t_inv_f slots = fun i -> () let slots_t_from_fun (#t : Type0) (slots : slots_t t{length slots <= usize_max}) (f : slots_t_inv_f slots) : Lemma (slots_t_inv slots) = let f' (i:nat{i < length slots}) : Lemma (slot_t_inv (length slots) i (index slots i)) [SMTPat (slot_t_inv (length slots) i (index slots i))] = f i in () *) // TODO: hash_map_slots -> hash_map_slots_s let hash_map_slots_s_inv (#t : Type0) (hm : hash_map_slots_s t) : Type0 = length hm <= usize_max /\ length hm > 0 /\ slots_s_inv hm /// Base invariant for the hashmap (the complete invariant can be temporarily /// broken between the moment we inserted an element and the moment we resize) let hash_map_t_base_inv (#t : Type0) (hm : hash_map_t t) : Type0 = let al = hash_map_t_v hm in // [num_entries] correctly tracks the number of entries in the table // Note that it gives us that the length of the slots array is <= usize_max hm.hash_map_num_entries = length al /\ // Slots invariant slots_t_inv hm.hash_map_slots /\ // The capacity must be > 0 (otherwise we can't resize, because we // multiply the capacity by two!) length hm.hash_map_slots > 0 /\ // Load computation begin let capacity = length hm.hash_map_slots in let (dividend, divisor) = hm.hash_map_max_load_factor in 0 < dividend /\ dividend < divisor /\ hm.hash_map_max_load = (capacity * dividend) / divisor end /// Invariant for the hashmap let hash_map_t_inv (#t : Type0) (hm : hash_map_t t) : Type0 = // Base invariant hash_map_t_base_inv hm // The hash map is either: not overloaded, or we can't resize it // (hm.hash_map_num_entries <= hm.hash_map_max_load // || length hm.hash_map_slots * 2 > usize_max) /// The following predicate links the hashmap to an associative list. /// Note that it does not compute the representant: different (permuted) /// lists can be used to represent the same hashmap! let hash_map_t_is_al (#t : Type0) (hm : hash_map_t t) (al : assoc_list t) : Type0 = let hm_al = hash_map_t_v hm in assoc_list_equiv hm_al al (* /// The invariant we reveal to the user let hash_map_t_inv_repr (#t : Type0) (hm : hash_map_t t) (al : assoc_list t) : Type0 = // The hash map invariant is satisfied hash_map_t_inv hm /\ // And it can be seen as the given associative list hash_map_t_is_al hm al *) (*** allocate_slots *) /// Auxiliary lemma val slots_t_all_nil_inv_lem (#t : Type0) (slots : vec (list_t t){length slots <= usize_max}) : Lemma (requires (forall (i:nat{i < length slots}). index slots i == ListNil)) (ensures (slots_t_inv slots)) #push-options "--fuel 1" let slots_t_all_nil_inv_lem #t slots = () #pop-options val slots_t_al_v_all_nil_is_empty_lem (#t : Type0) (slots : vec (list_t t)) : Lemma (requires (forall (i:nat{i < length slots}). index slots i == ListNil)) (ensures (slots_t_al_v slots == [])) #push-options "--fuel 1" let rec slots_t_al_v_all_nil_is_empty_lem #t slots = match slots with | [] -> () | s :: slots' -> assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1)); slots_t_al_v_all_nil_is_empty_lem #t slots'; assert(slots_t_al_v slots == list_t_v s @ slots_t_al_v slots'); assert(slots_t_al_v slots == list_t_v s); assert(index slots 0 == ListNil) #pop-options /// [allocate_slots] val hash_map_allocate_slots_fwd_lem (t : Type0) (slots : vec (list_t t)) (n : usize) : Lemma (requires (length slots + n <= usize_max)) (ensures ( match hash_map_allocate_slots_fwd t slots n with | Fail -> False | Return slots' -> length slots' = length slots + n /\ // We leave the already allocated slots unchanged (forall (i:nat{i < length slots}). index slots' i == index slots i) /\ // We allocate n additional empty slots (forall (i:nat{length slots <= i /\ i < length slots'}). index slots' i == ListNil))) (decreases (hash_map_allocate_slots_decreases t slots n)) #push-options "--fuel 1" let rec hash_map_allocate_slots_fwd_lem t slots n = begin match n with | 0 -> () | _ -> begin match vec_push_back (list_t t) slots ListNil with | Fail -> () | Return slots1 -> begin match usize_sub n 1 with | Fail -> () | Return i -> hash_map_allocate_slots_fwd_lem t slots1 i; begin match hash_map_allocate_slots_fwd t slots1 i with | Fail -> () | Return slots2 -> assert(length slots1 = length slots + 1); assert(slots1 == slots @ [ListNil]); // Triggers patterns assert(index slots1 (length slots) == index [ListNil] 0); // Triggers patterns assert(index slots1 (length slots) == ListNil) end end end end #pop-options (*** new_with_capacity *) /// Under proper conditions, [new_with_capacity] doesn't fail and returns an empty hash map. val hash_map_new_with_capacity_fwd_lem (t : Type0) (capacity : usize) (max_load_dividend : usize) (max_load_divisor : usize) : Lemma (requires ( 0 < max_load_dividend /\ max_load_dividend < max_load_divisor /\ 0 < capacity /\ capacity * max_load_dividend < usize_max)) (ensures ( match hash_map_new_with_capacity_fwd t capacity max_load_dividend max_load_divisor with | Fail -> False | Return hm -> // The hash map has the specified capacity - we need to reveal this // otherwise the pre of [hash_map_t_find_s] is not satisfied. length hm.hash_map_slots = capacity /\ // The hash map has 0 values hash_map_t_len_s hm = 0 /\ // It contains no bindings (forall k. hash_map_t_find_s hm k == None) /\ // We need this low-level property for the invariant (forall(i:nat{i < length hm.hash_map_slots}). index hm.hash_map_slots i == ListNil))) #push-options "--z3rlimit 50 --fuel 1" let hash_map_new_with_capacity_fwd_lem (t : Type0) (capacity : usize) (max_load_dividend : usize) (max_load_divisor : usize) = let v = vec_new (list_t t) in assert(length v = 0); hash_map_allocate_slots_fwd_lem t v capacity; begin match hash_map_allocate_slots_fwd t v capacity with | Fail -> assert(False) | Return v0 -> begin match usize_mul capacity max_load_dividend with | Fail -> assert(False) | Return i -> begin match usize_div i max_load_divisor with | Fail -> assert(False) | Return i0 -> let hm = Mkhash_map_t 0 (max_load_dividend, max_load_divisor) i0 v0 in slots_t_all_nil_inv_lem v0 end end end #pop-options (*** new *) /// [new] doesn't fail and returns an empty hash map val hash_map_new_fwd_lem_fun (t : Type0) : Lemma (ensures ( match hash_map_new_fwd t with | Fail -> False | Return hm -> // The hash map invariant is satisfied hash_map_t_inv hm /\ // The hash map has 0 values hash_map_t_len_s hm = 0 /\ // It contains no bindings (forall k. hash_map_t_find_s hm k == None))) #push-options "--fuel 1" let hash_map_new_fwd_lem_fun t = hash_map_new_with_capacity_fwd_lem t 32 4 5; match hash_map_new_with_capacity_fwd t 32 4 5 with | Fail -> () | Return hm -> slots_t_al_v_all_nil_is_empty_lem hm.hash_map_slots #pop-options (*** clear_slots *) /// [clear_slots] doesn't fail and simply clears the slots starting at index i #push-options "--fuel 1" let rec hash_map_clear_slots_fwd_back_lem (t : Type0) (slots : vec (list_t t)) (i : usize) : Lemma (ensures ( match hash_map_clear_slots_fwd_back t slots i with | Fail -> False | Return slots' -> // The length is preserved length slots' == length slots /\ // The slots before i are left unchanged (forall (j:nat{j < i /\ j < length slots}). index slots' j == index slots j) /\ // The slots after i are set to ListNil (forall (j:nat{i <= j /\ j < length slots}). index slots' j == ListNil))) (decreases (hash_map_clear_slots_decreases t slots i)) = let i0 = vec_len (list_t t) slots in let b = i < i0 in if b then begin match vec_index_mut_back (list_t t) slots i ListNil with | Fail -> () | Return v -> begin match usize_add i 1 with | Fail -> () | Return i1 -> hash_map_clear_slots_fwd_back_lem t v i1; begin match hash_map_clear_slots_fwd_back t v i1 with | Fail -> () | Return slots1 -> assert(length slots1 == length slots); assert(forall (j:nat{i+1 <= j /\ j < length slots}). index slots1 j == ListNil); assert(index slots1 i == ListNil) end end end else () #pop-options (*** clear *) /// [clear] doesn't fail and turns the hash map into an empty map val hash_map_clear_fwd_back_lem_fun (t : Type0) (self : hash_map_t t) : Lemma (requires (hash_map_t_inv self)) (ensures ( match hash_map_clear_fwd_back t self with | Fail -> False | Return hm -> // The hash map invariant is satisfied hash_map_t_inv hm /\ // The hash map has 0 values hash_map_t_len_s hm = 0 /\ // It contains no bindings (forall k. hash_map_t_find_s hm k == None))) // Being lazy: fuel 1 helps a lot... #push-options "--fuel 1" let hash_map_clear_fwd_back_lem_fun t self = let p = self.hash_map_max_load_factor in let i = self.hash_map_max_load in let v = self.hash_map_slots in hash_map_clear_slots_fwd_back_lem t v 0; begin match hash_map_clear_slots_fwd_back t v 0 with | Fail -> () | Return slots1 -> slots_t_al_v_all_nil_is_empty_lem slots1; let hm1 = Mkhash_map_t 0 p i slots1 in assert(hash_map_t_base_inv hm1); assert(hash_map_t_inv hm1); assert(hash_map_t_is_al hm1 []) end #pop-options (*** len *) /// [len]: we link it to a non-failing function. /// Rk.: we might want to make an analysis to not use an error monad to translate /// functions which statically can't fail. val hash_map_len_fwd_lem (t : Type0) (self : hash_map_t t) : Lemma ( match hash_map_len_fwd t self with | Fail -> False | Return l -> l = hash_map_t_len_s self) let hash_map_len_fwd_lem t self = () (*** insert_in_list *) (**** insert_in_list'fwd *) /// [insert_in_list_fwd]: returns true iff the key is not in the list (functional version) val hash_map_insert_in_list_fwd_lem (t : Type0) (key : usize) (value : t) (ls : list_t t) : Lemma (ensures ( match hash_map_insert_in_list_fwd t key value ls with | Fail -> False | Return b -> b <==> (slot_t_find_s key ls == None))) (decreases (hash_map_insert_in_list_decreases t key value ls)) #push-options "--fuel 1" let rec hash_map_insert_in_list_fwd_lem t key value ls = begin match ls with | ListCons ckey cvalue ls0 -> let b = ckey = key in if b then () else begin hash_map_insert_in_list_fwd_lem t key value ls0; match hash_map_insert_in_list_fwd t key value ls0 with | Fail -> () | Return b0 -> () end | ListNil -> assert(list_t_v ls == []); assert_norm(find (same_key #t key) [] == None) end #pop-options (**** insert_in_list'back *) /// The proofs about [insert_in_list] backward are easier to do in several steps: /// extrinsic proofs to the rescue! /// We first prove that [insert_in_list] refines the function we wrote above, then /// use this function to prove the invariants, etc. /// We write a helper which "captures" what [insert_in_list] does. /// We then reason about this helper to prove the high-level properties we want /// (functional properties, preservation of invariants, etc.). let hash_map_insert_in_list_s (#t : Type0) (key : usize) (value : t) (ls : list (binding t)) : list (binding t) = // Check if there is already a binding for the key match find (same_key key) ls with | None -> // No binding: append the binding to the end ls @ [(key,value)] | Some _ -> // There is already a binding: update it find_update (same_key key) ls (key,value) /// [insert_in_list]: if the key is not in the map, appends a new bindings (functional version) val hash_map_insert_in_list_back_lem_append_s (t : Type0) (key : usize) (value : t) (ls : list_t t) : Lemma (requires ( slot_t_find_s key ls == None)) (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False | Return ls' -> list_t_v ls' == list_t_v ls @ [(key,value)])) (decreases (hash_map_insert_in_list_decreases t key value ls)) #push-options "--fuel 1" let rec hash_map_insert_in_list_back_lem_append_s t key value ls = begin match ls with | ListCons ckey cvalue ls0 -> let b = ckey = key in if b then () else begin hash_map_insert_in_list_back_lem_append_s t key value ls0; match hash_map_insert_in_list_back t key value ls0 with | Fail -> () | Return l -> () end | ListNil -> () end #pop-options /// [insert_in_list]: if the key is in the map, we update the binding (functional version) val hash_map_insert_in_list_back_lem_update_s (t : Type0) (key : usize) (value : t) (ls : list_t t) : Lemma (requires ( Some? (find (same_key key) (list_t_v ls)))) (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False | Return ls' -> list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value))) (decreases (hash_map_insert_in_list_decreases t key value ls)) #push-options "--fuel 1" let rec hash_map_insert_in_list_back_lem_update_s t key value ls = begin match ls with | ListCons ckey cvalue ls0 -> let b = ckey = key in if b then () else begin hash_map_insert_in_list_back_lem_update_s t key value ls0; match hash_map_insert_in_list_back t key value ls0 with | Fail -> () | Return l -> () end | ListNil -> () end #pop-options /// Put everything together val hash_map_insert_in_list_back_lem_s (t : Type0) (key : usize) (value : t) (ls : list_t t) : Lemma (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False | Return ls' -> list_t_v ls' == hash_map_insert_in_list_s key value (list_t_v ls))) let hash_map_insert_in_list_back_lem_s t key value ls = match find (same_key key) (list_t_v ls) with | None -> hash_map_insert_in_list_back_lem_append_s t key value ls | Some _ -> hash_map_insert_in_list_back_lem_update_s t key value ls (**** Invariants of insert_in_list_s *) /// Auxiliary lemmas /// We work on [hash_map_insert_in_list_s], the "high-level" version of [insert_in_list'back]. /// /// Note that in F* we can't have recursive proofs inside of other proofs, contrary /// to Coq, which makes it a bit cumbersome to prove auxiliary results like the /// following ones... (** Auxiliary lemmas: append case *) val slot_t_v_for_all_binding_neq_append_lem (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) : Lemma (requires ( fst b <> key /\ for_all (binding_neq b) ls /\ slot_find key ls == None)) (ensures ( for_all (binding_neq b) (ls @ [(key,value)]))) #push-options "--fuel 1" let rec slot_t_v_for_all_binding_neq_append_lem t key value ls b = match ls with | [] -> () | (ck, cv) :: cls -> slot_t_v_for_all_binding_neq_append_lem t key value cls b #pop-options val slot_s_inv_not_find_append_end_inv_lem (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : Lemma (requires ( slot_s_inv len (hash_mod_key key len) ls /\ slot_find key ls == None)) (ensures ( let ls' = ls @ [(key,value)] in slot_s_inv len (hash_mod_key key len) ls' /\ (slot_find key ls' == Some value) /\ (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls))) #push-options "--fuel 1" let rec slot_s_inv_not_find_append_end_inv_lem t len key value ls = match ls with | [] -> () | (ck, cv) :: cls -> slot_s_inv_not_find_append_end_inv_lem t len key value cls; let h = hash_mod_key key len in let ls' = ls @ [(key,value)] in assert(for_all (same_hash_mod_key len h) ls'); slot_t_v_for_all_binding_neq_append_lem t key value cls (ck, cv); assert(pairwise_rel binding_neq ls'); assert(slot_s_inv len h ls') #pop-options /// [insert_in_list]: if the key is not in the map, appends a new bindings val hash_map_insert_in_list_s_lem_append (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : Lemma (requires ( slot_s_inv len (hash_mod_key key len) ls /\ slot_find key ls == None)) (ensures ( let ls' = hash_map_insert_in_list_s key value ls in ls' == ls @ [(key,value)] /\ // The invariant is preserved slot_s_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] slot_find key ls' == Some value /\ // The other bindings are preserved (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls))) let hash_map_insert_in_list_s_lem_append t len key value ls = slot_s_inv_not_find_append_end_inv_lem t len key value ls /// [insert_in_list]: if the key is not in the map, appends a new bindings (quantifiers) /// Rk.: we don't use this lemma. /// TODO: remove? val hash_map_insert_in_list_back_lem_append (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : Lemma (requires ( slot_t_inv len (hash_mod_key key len) ls /\ slot_t_find_s key ls == None)) (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False | Return ls' -> list_t_v ls' == list_t_v ls @ [(key,value)] /\ // The invariant is preserved slot_t_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] slot_t_find_s key ls' == Some value /\ // The other bindings are preserved (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls))) let hash_map_insert_in_list_back_lem_append t len key value ls = hash_map_insert_in_list_back_lem_s t key value ls; hash_map_insert_in_list_s_lem_append t len key value (list_t_v ls) (** Auxiliary lemmas: update case *) val slot_find_update_for_all_binding_neq_append_lem (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) : Lemma (requires ( fst b <> key /\ for_all (binding_neq b) ls)) (ensures ( let ls' = find_update (same_key key) ls (key, value) in for_all (binding_neq b) ls')) #push-options "--fuel 1" let rec slot_find_update_for_all_binding_neq_append_lem t key value ls b = match ls with | [] -> () | (ck, cv) :: cls -> slot_find_update_for_all_binding_neq_append_lem t key value cls b #pop-options /// Annoying auxiliary lemma we have to prove because there is no way to reason /// properly about closures. /// I'm really enjoying my time. val for_all_binding_neq_value_indep (#t : Type0) (key : key) (v0 v1 : t) (ls : list (binding t)) : Lemma (for_all (binding_neq (key,v0)) ls = for_all (binding_neq (key,v1)) ls) #push-options "--fuel 1" let rec for_all_binding_neq_value_indep #t key v0 v1 ls = match ls with | [] -> () | _ :: ls' -> for_all_binding_neq_value_indep #t key v0 v1 ls' #pop-options val slot_s_inv_find_append_end_inv_lem (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : Lemma (requires ( slot_s_inv len (hash_mod_key key len) ls /\ Some? (slot_find key ls))) (ensures ( let ls' = find_update (same_key key) ls (key, value) in slot_s_inv len (hash_mod_key key len) ls' /\ (slot_find key ls' == Some value) /\ (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls))) #push-options "--z3rlimit 50 --fuel 1" let rec slot_s_inv_find_append_end_inv_lem t len key value ls = match ls with | [] -> () | (ck, cv) :: cls -> let h = hash_mod_key key len in let ls' = find_update (same_key key) ls (key, value) in if ck = key then begin assert(ls' == (ck,value) :: cls); assert(for_all (same_hash_mod_key len h) ls'); // For pairwise_rel: binding_neq (ck, value) is actually independent // of `value`. Slightly annoying to prove in F*... assert(for_all (binding_neq (ck,cv)) cls); for_all_binding_neq_value_indep key cv value cls; assert(for_all (binding_neq (ck,value)) cls); assert(pairwise_rel binding_neq ls'); assert(slot_s_inv len (hash_mod_key key len) ls') end else begin slot_s_inv_find_append_end_inv_lem t len key value cls; assert(for_all (same_hash_mod_key len h) ls'); slot_find_update_for_all_binding_neq_append_lem t key value cls (ck, cv); assert(pairwise_rel binding_neq ls'); assert(slot_s_inv len h ls') end #pop-options /// [insert_in_list]: if the key is in the map, update the bindings val hash_map_insert_in_list_s_lem_update (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : Lemma (requires ( slot_s_inv len (hash_mod_key key len) ls /\ Some? (slot_find key ls))) (ensures ( let ls' = hash_map_insert_in_list_s key value ls in ls' == find_update (same_key key) ls (key,value) /\ // The invariant is preserved slot_s_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] slot_find key ls' == Some value /\ // The other bindings are preserved (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls))) let hash_map_insert_in_list_s_lem_update t len key value ls = slot_s_inv_find_append_end_inv_lem t len key value ls /// [insert_in_list]: if the key is in the map, update the bindings /// TODO: not used: remove? val hash_map_insert_in_list_back_lem_update (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : Lemma (requires ( slot_t_inv len (hash_mod_key key len) ls /\ Some? (slot_t_find_s key ls))) (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False | Return ls' -> let als = list_t_v ls in list_t_v ls' == find_update (same_key key) als (key,value) /\ // The invariant is preserved slot_t_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] slot_t_find_s key ls' == Some value /\ // The other bindings are preserved (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls))) let hash_map_insert_in_list_back_lem_update t len key value ls = hash_map_insert_in_list_back_lem_s t key value ls; hash_map_insert_in_list_s_lem_update t len key value (list_t_v ls) (** Final lemmas about [insert_in_list] *) /// High-level version val hash_map_insert_in_list_s_lem (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : Lemma (requires ( slot_s_inv len (hash_mod_key key len) ls)) (ensures ( let ls' = hash_map_insert_in_list_s key value ls in // The invariant is preserved slot_s_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] slot_find key ls' == Some value /\ // The other bindings are preserved (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls) /\ // The length is incremented, iff we inserted a new key (match slot_find key ls with | None -> length ls' = length ls + 1 | Some _ -> length ls' = length ls))) let hash_map_insert_in_list_s_lem t len key value ls = match slot_find key ls with | None -> assert_norm(length [(key,value)] = 1); hash_map_insert_in_list_s_lem_append t len key value ls | Some _ -> hash_map_insert_in_list_s_lem_update t len key value ls /// [insert_in_list] /// TODO: not used: remove? val hash_map_insert_in_list_back_lem (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : Lemma (requires (slot_t_inv len (hash_mod_key key len) ls)) (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False | Return ls' -> // The invariant is preserved slot_t_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] slot_t_find_s key ls' == Some value /\ // The other bindings are preserved (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls) /\ // The length is incremented, iff we inserted a new key (match slot_t_find_s key ls with | None -> list_t_v ls' == list_t_v ls @ [(key,value)] /\ list_t_len ls' = list_t_len ls + 1 | Some _ -> list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value) /\ list_t_len ls' = list_t_len ls))) (decreases (hash_map_insert_in_list_decreases t key value ls)) let hash_map_insert_in_list_back_lem t len key value ls = hash_map_insert_in_list_back_lem_s t key value ls; hash_map_insert_in_list_s_lem t len key value (list_t_v ls) (*** insert_no_resize *) (**** Refinement proof *) /// Same strategy as for [insert_in_list]: we introduce a high-level version of /// the function, and reason about it. /// We work on [hash_map_slots_s] (we use a higher-level view of the hash-map, but /// not too high). let hash_map_insert_no_resize_s (#t : Type0) (hm : hash_map_slots_s t{length hm <= usize_max /\ length hm > 0}) (key : usize) (value : t) : result (hash_map_slots_s t) = // Check if the table is saturated (too many entries, and we need to insert one) let num_entries = length (flatten hm) in if None? (hash_map_slots_s_find hm key) && num_entries = usize_max then Fail else begin let len = length hm in let i = hash_mod_key key len in let slot = index hm i in let slot' = hash_map_insert_in_list_s key value slot in let hm' = list_update hm i slot' in Return hm' end /// Prove that [hash_map_insert_no_resize_s] is a refinement of /// [hash_map_insert_no_resize'fwd_back] val hash_map_insert_no_resize_fwd_back_lem_s (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : Lemma (requires ( hash_map_t_inv self /\ hash_map_slots_s_len (hash_map_t_slots_v self) = hash_map_t_len_s self)) (ensures ( begin match hash_map_insert_no_resize_fwd_back t self key value, hash_map_insert_no_resize_s (hash_map_t_slots_v self) key value with | Fail, Fail -> True | Return hm, Return hm_v -> hash_map_t_inv hm /\ hash_map_t_slots_v hm == hm_v /\ hash_map_slots_s_len hm_v = hash_map_t_len_s hm | _ -> False end)) let hash_map_insert_no_resize_fwd_back_lem_s t self key value = begin match hash_key_fwd key with | Fail -> () | Return i -> let i0 = self.hash_map_num_entries in let p = self.hash_map_max_load_factor in let i1 = self.hash_map_max_load in let v = self.hash_map_slots in let i2 = vec_len (list_t t) v in let len = length v in begin match usize_rem i i2 with | Fail -> () | Return hash_mod -> begin match vec_index_mut_fwd (list_t t) v hash_mod with | Fail -> () | Return l -> begin // Checking that: list_t_v (index ...) == index (hash_map_t_slots_v ...) ... assert(list_t_v l == index (hash_map_t_slots_v self) hash_mod); hash_map_insert_in_list_fwd_lem t key value l; match hash_map_insert_in_list_fwd t key value l with | Fail -> () | Return b -> assert(b = None? (slot_find key (list_t_v l))); hash_map_insert_in_list_back_lem t len key value l; if b then begin match usize_add i0 1 with | Fail -> () | Return i3 -> begin match hash_map_insert_in_list_back t key value l with | Fail -> () | Return l0 -> begin match vec_index_mut_back (list_t t) v hash_mod l0 with | Fail -> () | Return v0 -> let self_v = hash_map_t_slots_v self in let hm = Mkhash_map_t i3 p i1 v0 in let hm_v = hash_map_t_slots_v hm in assert(hm_v == list_update self_v hash_mod (list_t_v l0)); assert_norm(length [(key,value)] = 1); assert(length (list_t_v l0) = length (list_t_v l) + 1); length_flatten_update self_v hash_mod (list_t_v l0); assert(hash_map_slots_s_len hm_v = hash_map_t_len_s hm) end end end else begin match hash_map_insert_in_list_back t key value l with | Fail -> () | Return l0 -> begin match vec_index_mut_back (list_t t) v hash_mod l0 with | Fail -> () | Return v0 -> let self_v = hash_map_t_slots_v self in let hm = Mkhash_map_t i0 p i1 v0 in let hm_v = hash_map_t_slots_v hm in assert(hm_v == list_update self_v hash_mod (list_t_v l0)); assert(length (list_t_v l0) = length (list_t_v l)); length_flatten_update self_v hash_mod (list_t_v l0); assert(hash_map_slots_s_len hm_v = hash_map_t_len_s hm) end end end end end end (**** find after insert *) /// Lemmas about what happens if we call [find] after an insertion val hash_map_insert_no_resize_s_get_same_lem (#t : Type0) (hm : hash_map_slots_s t) (key : usize) (value : t) : Lemma (requires (hash_map_slots_s_inv hm)) (ensures ( match hash_map_insert_no_resize_s hm key value with | Fail -> True | Return hm' -> hash_map_slots_s_find hm' key == Some value)) let hash_map_insert_no_resize_s_get_same_lem #t hm key value = let num_entries = length (flatten hm) in if None? (hash_map_slots_s_find hm key) && num_entries = usize_max then () else begin let hm' = Return?.v (hash_map_insert_no_resize_s hm key value) in let len = length hm in let i = hash_mod_key key len in let slot = index hm i in hash_map_insert_in_list_s_lem t len key value slot end val hash_map_insert_no_resize_s_get_diff_lem (#t : Type0) (hm : hash_map_slots_s t) (key : usize) (value : t) (key' : usize{key' <> key}) : Lemma (requires (hash_map_slots_s_inv hm)) (ensures ( match hash_map_insert_no_resize_s hm key value with | Fail -> True | Return hm' -> hash_map_slots_s_find hm' key' == hash_map_slots_s_find hm key')) let hash_map_insert_no_resize_s_get_diff_lem #t hm key value key' = let num_entries = length (flatten hm) in if None? (hash_map_slots_s_find hm key) && num_entries = usize_max then () else begin let hm' = Return?.v (hash_map_insert_no_resize_s hm key value) in let len = length hm in let i = hash_mod_key key len in let slot = index hm i in hash_map_insert_in_list_s_lem t len key value slot; let i' = hash_mod_key key' len in if i <> i' then () else begin () end end (*** move_elements_from_list *) let rec hash_map_move_elements_from_list_s (#t : Type0) (hm : hash_map_slots_s_nes t) (ls : slot_s t) : Pure (result (hash_map_slots_s t)) (requires (True)) (ensures (fun res -> // Having a great time here: if we use `result (hash_map_slots_s_res t)` // as the return type, instead of having this awkward match, the proof // of [hash_map_move_elements_fwd_back_lem] fails. I guess it comes from // F*'s poor subtyping. match res with | Fail -> True | Return hm -> is_pos_usize (length hm))) (decreases ls) = match ls with | [] -> Return hm | (key, value) :: ls' -> match hash_map_insert_no_resize_s hm key value with | Fail -> Fail | Return hm' -> hash_map_move_elements_from_list_s hm' ls' /// Refinement lemma val hash_map_move_elements_from_list_fwd_back_lem (t : Type0) (ntable : hash_map_t_nes t) (ls : list_t t) : Lemma (requires (hash_map_t_inv ntable)) (ensures ( match hash_map_move_elements_from_list_fwd_back t ntable ls, hash_map_move_elements_from_list_s (hash_map_t_slots_v ntable) (slot_t_v ls) with | Fail, Fail -> True | Return hm', Return hm_v -> hash_map_t_inv hm' /\ hash_map_t_slots_v hm' == hm_v | _ -> False)) (decreases (hash_map_move_elements_from_list_decreases t ntable ls)) #push-options "--fuel 1" let rec hash_map_move_elements_from_list_fwd_back_lem t ntable ls = begin match ls with | ListCons k v tl -> assert(list_t_v ls == (k, v) :: list_t_v tl); let ls_v = list_t_v ls in let (_,_) :: tl_v = ls_v in hash_map_insert_no_resize_fwd_back_lem_s t ntable k v; begin match hash_map_insert_no_resize_fwd_back t ntable k v with | Fail -> () | Return h -> let h_v = Return?.v (hash_map_insert_no_resize_s (hash_map_t_slots_v ntable) k v) in assert(hash_map_t_slots_v h == h_v); hash_map_move_elements_from_list_fwd_back_lem t h tl; begin match hash_map_move_elements_from_list_fwd_back t h tl with | Fail -> () | Return h0 -> () end end | ListNil -> () end #pop-options (*** move_elements *) // Note that we ignore the returned slots (we thus don't return a pair: // only the new hash map in which we moved the elements from the slots): // this returned value is not used. let rec hash_map_move_elements_s (#t : Type0) (hm : hash_map_slots_s_nes t) (slots : slots_s t) (i : usize{i <= length slots /\ length slots <= usize_max}) : Tot (result (hash_map_slots_s_nes t)) (decreases (length slots - i)) = let len = length slots in if i < len then begin let slot = index slots i in match hash_map_move_elements_from_list_s hm slot with | Fail -> Fail | Return hm' -> let slots' = list_update slots i [] in hash_map_move_elements_s hm' slots' (i+1) end else Return hm val hash_map_move_elements_fwd_back_lem (t : Type0) (ntable : hash_map_t t) (slots : vec (list_t t)) (i : usize{i <= length slots}) : Lemma (requires ( hash_map_t_inv ntable)) (ensures ( match hash_map_move_elements_fwd_back t ntable slots i, hash_map_move_elements_s (hash_map_t_slots_v ntable) (slots_t_v slots) i with | Fail, Fail -> True // We will prove later that this is not possible | Return (ntable', _), Return ntable'_v -> hash_map_t_inv ntable' /\ hash_map_t_slots_v ntable' == ntable'_v | _ -> False)) (decreases (length slots - i)) #restart-solver #push-options "--z3rlimit 200 --fuel 1" let rec hash_map_move_elements_fwd_back_lem t ntable slots i = assert(hash_map_t_inv ntable); let i0 = vec_len (list_t t) slots in let b = i < i0 in if b then begin match vec_index_mut_fwd (list_t t) slots i with | Fail -> () | Return l -> let l0 = mem_replace_fwd (list_t t) l ListNil in assert(l0 == l); hash_map_move_elements_from_list_fwd_back_lem t ntable l0; begin match hash_map_move_elements_from_list_fwd_back t ntable l0 with | Fail -> () | Return h -> let l1 = mem_replace_back (list_t t) l ListNil in assert(l1 == ListNil); begin match vec_index_mut_back (list_t t) slots i l1 with | Fail -> () | Return v -> begin match usize_add i 1 with | Fail -> () | Return i1 -> hash_map_move_elements_fwd_back_lem t h v i1; begin match hash_map_move_elements_fwd_back t h v i1 with | Fail -> () | Return (h0, v0) -> () end end end end end else () #pop-options