(** [betree_main]: templates for the decreases clauses *) module Betree.Clauses open Primitives open Betree.Types #set-options "--z3rlimit 50 --fuel 0 --ifuel 1" (*** Well-founded relations *) (* We had a few issues when proving termination of the mutually recursive functions: * - betree_Internal_flush * - betree_Node_apply_messages * * The quantity which effectively decreases is: * (betree_size, messages_length) * where messages_length is 0 when there are no messages * (and where we use the lexicographic ordering, of course) * * However, the `%[...]` and `{:well-founded ...} notations are not available outside * of `decrease` clauses. * * We thus resorted to writing and proving correct a well-founded relation over * pairs of natural numbers. The trick is that `<<` can be used outside of decrease * clauses, and can be used to trigger SMT patterns. * * What follows is adapted from: * https://www.fstar-lang.org/tutorial/book/part2/part2_well_founded.html * * Also, the following PR might make things easier: * https://github.com/FStarLang/FStar/pull/2561 *) module P = FStar.Preorder module W = FStar.WellFounded module L = FStar.LexicographicOrdering let lt_nat (x y:nat) : Type = x < y == true let rec wf_lt_nat (x:nat) : W.acc lt_nat x = W.AccIntro (fun y _ -> wf_lt_nat y) // A type abbreviation for a pair of nats let nat_pair = (x:nat & nat) // Making a lexicographic ordering from a pair of nat ordering let lex_order_nat_pair : P.relation nat_pair = L.lex_t lt_nat (fun _ -> lt_nat) // The lex order on nat pairs is well-founded, using our general proof // of lexicographic composition of well-founded orders let lex_order_nat_pair_wf : W.well_founded lex_order_nat_pair = L.lex_t_wf wf_lt_nat (fun _ -> wf_lt_nat) // A utility to introduce lt_nat let mk_lt_nat (x:nat) (y:nat { x < y }) : lt_nat x y = let _ : equals (x < y) true = Refl in () // A utility to make a lex ordering of nat pairs let mk_lex_order_nat_pair (xy0:nat_pair) (xy1:nat_pair { let (|x0, y0|) = xy0 in let (|x1, y1|) = xy1 in x0 < x1 \/ (x0 == x1 /\ y0 < y1) }) : lex_order_nat_pair xy0 xy1 = let (|x0, y0|) = xy0 in let (|x1, y1|) = xy1 in if x0 < x1 then L.Left_lex x0 x1 y0 y1 (mk_lt_nat x0 x1) else L.Right_lex x0 y0 y1 (mk_lt_nat y0 y1) let rec coerce #a #r #x (p:W.acc #a r x) : Tot (W.acc r x) (decreases p) = W.AccIntro (fun y r -> coerce (p.access_smaller y r)) let coerce_wf #a #r (p: (x:a -> W.acc r x)) : x:a -> W.acc r x = fun x -> coerce (p x) (* We need this axiom, which comes from the following discussion: * https://github.com/FStarLang/FStar/issues/1916 * An issue here is that the `{well-founded ... }` notation *) assume val axiom_well_founded (a : Type) (rel : a -> a -> Type0) (rwf : W.well_founded #a rel) (x y : a) : Lemma (requires (rel x y)) (ensures (x << y)) (* This lemma has a pattern (which makes it work) *) let wf_nat_pair_lem (p0 p1 : nat_pair) : Lemma (requires ( let (|x0, y0|) = p0 in let (|x1, y1|) = p1 in x0 < x1 || (x0 = x1 && y0 < y1))) (ensures (p0 << p1)) [SMTPat (p0 << p1)] = let rel = lex_order_nat_pair in let rel_wf = lex_order_nat_pair_wf in let _ = mk_lex_order_nat_pair p0 p1 in assert(rel p0 p1); axiom_well_founded nat_pair rel rel_wf p0 p1 (*** Decrease clauses *) /// "Standard" decrease clauses (** [betree_main::betree::List::{1}::len]: decreases clause *) unfold let betree_List_len_loop_decreases (t : Type0) (self : betree_List_t t) (len : u64) : betree_List_t t = self (** [betree::betree::{betree::betree::List<T>#1}::reverse]: decreases clause Source: 'src/betree.rs', lines 304:4-312:5 *) unfold let betree_List_reverse_loop_decreases (t : Type0) (self : betree_List_t t) (out : betree_List_t t) = self (** [betree::betree::{betree::betree::List<T>#1}::split_at]: decreases clause Source: 'src/betree.rs', lines 287:4-302:5 *) unfold let betree_List_split_at_loop_decreases (t : Type0) (n : u64) (beg : betree_List_t t) (self : betree_List_t t) : nat = n (** [betree::betree::{betree::betree::List<(u64, T)>#2}::partition_at_pivot]: decreases clause Source: 'src/betree.rs', lines 355:4-370:5 *) unfold let betree_ListPairU64T_partition_at_pivot_loop_decreases (t : Type0) (pivot : u64) (beg : betree_List_t (u64 & t)) (end0 : betree_List_t (u64 & t)) (self : betree_List_t (u64 & t)) = self (** [betree_main::betree::Node::{5}::lookup_in_bindings]: decreases clause *) unfold let betree_Node_lookup_in_bindings_loop_decreases (key : u64) (bindings : betree_List_t (u64 & u64)) : betree_List_t (u64 & u64) = bindings (** [betree_main::betree::Node::{5}::lookup_first_message_for_key]: decreases clause *) unfold let betree_Node_lookup_first_message_for_key_loop_decreases (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = msgs (** [betree_main::betree::Node::{5}::apply_upserts]: decreases clause *) unfold let betree_Node_apply_upserts_loop_decreases (msgs : betree_List_t (u64 & betree_Message_t)) (prev : option u64) (key : u64) : betree_List_t (u64 & betree_Message_t) = msgs (** [betree_main::betree::Internal::{4}::lookup_in_children]: decreases clause *) unfold let betree_Internal_lookup_in_children_decreases (self : betree_Internal_t) (key : u64) (st : state) : betree_Internal_t = self (** [betree_main::betree::Node::{5}::lookup]: decreases clause *) unfold let betree_Node_lookup_decreases (self : betree_Node_t) (key : u64) (st : state) : betree_Node_t = self (** [betree_main::betree::Node::{5}::lookup_mut_in_bindings]: decreases clause *) unfold let betree_Node_lookup_mut_in_bindings_loop_decreases (key : u64) (bindings : betree_List_t (u64 & u64)) : betree_List_t (u64 & u64) = bindings unfold let betree_Node_apply_messages_to_leaf_loop_decreases (bindings : betree_List_t (u64 & u64)) (new_msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = new_msgs (** [betree_main::betree::Node::{5}::filter_messages_for_key]: decreases clause *) unfold let betree_Node_filter_messages_for_key_loop_decreases (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = msgs (** [betree_main::betree::Node::{5}::lookup_first_message_after_key]: decreases clause *) unfold let betree_Node_lookup_first_message_after_key_loop_decreases (key : u64) (msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = msgs let betree_Node_apply_messages_to_internal_loop_decreases (msgs : betree_List_t (u64 & betree_Message_t)) (new_msgs : betree_List_t (u64 & betree_Message_t)) : betree_List_t (u64 & betree_Message_t) = new_msgs (*** Decrease clauses - nat_pair *) /// The following decrease clauses use the [nat_pair] definition and the well-founded /// relation proven above. let rec betree_size (bt : betree_Node_t) : nat = match bt with | Betree_Node_Internal node -> 1 + betree_Internal_size node | Betree_Node_Leaf _ -> 1 and betree_Internal_size (node : betree_Internal_t) : nat = 1 + betree_size node.left + betree_size node.right let rec betree_List_len (#a : Type0) (ls : betree_List_t a) : nat = match ls with | Betree_List_Cons _ tl -> 1 + betree_List_len tl | Betree_List_Nil -> 0 (** [betree_main::betree::Internal::{4}::flush]: decreases clause *) unfold let betree_Internal_flush_decreases (self : betree_Internal_t) (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t) (content : betree_List_t (u64 & betree_Message_t)) (st : state) : nat_pair = (|betree_Internal_size self, 0|) (** [betree_main::betree::Node::{5}::apply_messages]: decreases clause *) unfold let betree_Node_apply_messages_decreases (self : betree_Node_t) (params : betree_Params_t) (node_id_cnt : betree_NodeIdCounter_t) (msgs : betree_List_t (u64 & betree_Message_t)) (st : state) : nat_pair = (|betree_size self, betree_List_len msgs|)