open InterpreterStatements open Interpreter module L = Logging module T = Types module A = LlbcAst module M = Modules module SA = SymbolicAst module Micro = PureMicroPasses open PureUtils open TranslateCore (** The local logger *) let log = TranslateCore.log type config = { eval_config : Contexts.partial_config; mp_config : Micro.config; use_state : bool; (** Controls whether we need to use a state to model the external world (I/O, for instance). *) split_files : bool; (** Controls whether we split the generated definitions between different files for the types, clauses and functions, or if we group them in one file. *) test_unit_functions : bool; (** If true, insert tests in the generated files to check that the unit functions normalize to `Success _`. For instance, in F* it generates code like this: ``` let _ = assert_norm (FUNCTION () = Success ()) ``` *) extract_decreases_clauses : bool; (** If `true`, insert `decreases` clauses for all the recursive definitions. The body of such clauses must be defined by the user. *) extract_template_decreases_clauses : bool; (** In order to help the user, we can generate "template" decrease clauses (i.e., definitions with proper signatures but dummy bodies) in a dedicated file. *) } type symbolic_fun_translation = V.symbolic_value list * SA.expression (** The result of running the symbolic interpreter on a function: - the list of symbolic values used for the input values - the generated symbolic AST *) (** Execute the symbolic interpreter on a function to generate a list of symbolic ASTs, for the forward function and the backward functions. *) let translate_function_to_symbolics (config : C.partial_config) (trans_ctx : trans_ctx) (fdef : A.fun_decl) : (symbolic_fun_translation * symbolic_fun_translation list) option = (* Debug *) log#ldebug (lazy ("translate_function_to_symbolics: " ^ Print.fun_name_to_string fdef.A.name)); let { type_context; fun_context; global_context } = trans_ctx in let fun_context = { C.fun_decls = fun_context.fun_decls; } in match fdef.body with | None -> None | Some _ -> (* Evaluate *) let synthesize = true in let evaluate gid = let inputs, symb = evaluate_function_symbolic config synthesize type_context fun_context global_context fdef gid in (inputs, Option.get symb) in (* Execute the forward function *) let forward = evaluate None in (* Execute the backward functions *) let backwards = T.RegionGroupId.mapi (fun gid _ -> evaluate (Some gid)) fdef.signature.regions_hierarchy in (* Return *) Some (forward, backwards) (** Translate a function, by generating its forward and backward translations. [fun_sigs]: maps the forward/backward functions to their signatures. In case of backward functions, we also provide names for the outputs. TODO: maybe we should introduce a record for this. *) let translate_function_to_pure (config : C.partial_config) (mp_config : Micro.config) (trans_ctx : trans_ctx) (fun_sigs : SymbolicToPure.fun_sig_named_outputs RegularFunIdMap.t) (pure_type_decls : Pure.type_decl Pure.TypeDeclId.Map.t) (fdef : A.fun_decl) : pure_fun_translation = (* Debug *) log#ldebug (lazy ("translate_function_to_pure: " ^ Print.fun_name_to_string fdef.A.name)); let { type_context; fun_context; global_context } = trans_ctx in let def_id = fdef.def_id in (* Compute the symbolic ASTs, if the function is transparent *) let symbolic_trans = translate_function_to_symbolics config trans_ctx fdef in let symbolic_forward, symbolic_backwards = match symbolic_trans with | None -> (None, None) | Some (fwd, backs) -> (Some fwd, Some backs) in (* Convert the symbolic ASTs to pure ASTs: *) (* Initialize the context *) let forward_sig = RegularFunIdMap.find (A.Regular def_id, None) fun_sigs in let sv_to_var = V.SymbolicValueId.Map.empty in let var_counter = Pure.VarId.generator_zero in let state_var, var_counter = Pure.VarId.fresh var_counter in let calls = V.FunCallId.Map.empty in let abstractions = V.AbstractionId.Map.empty in let type_context = { SymbolicToPure.types_infos = type_context.type_infos; llbc_type_decls = type_context.type_decls; type_decls = pure_type_decls; } in let fun_context = { SymbolicToPure.llbc_fun_decls = fun_context.fun_decls; fun_sigs; fun_infos = fun_context.fun_infos; } in let global_context = { SymbolicToPure.llbc_global_decls = global_context.global_decls } in let ctx = { SymbolicToPure.bid = None; (* Dummy for now *) sg = forward_sig.sg; (* Will need to be updated for the backward functions *) sv_to_var; var_counter; state_var; type_context; fun_context; global_context; fun_decl = fdef; forward_inputs = []; (* Empty for now *) backward_inputs = T.RegionGroupId.Map.empty; (* Empty for now *) backward_outputs = T.RegionGroupId.Map.empty; (* Empty for now *) calls; abstractions; } in (* We need to initialize the input/output variables *) let num_forward_inputs = List.length fdef.signature.inputs in let add_forward_inputs input_svs ctx = match fdef.body with | None -> ctx | Some body -> let forward_input_vars = LlbcAstUtils.fun_body_get_input_vars body in let forward_input_varnames = List.map (fun (v : A.var) -> v.name) forward_input_vars in let input_svs = List.combine forward_input_varnames input_svs in let ctx, forward_inputs = SymbolicToPure.fresh_named_vars_for_symbolic_values input_svs ctx in { ctx with forward_inputs } in (* The symbolic to pure config *) let sp_config = { SymbolicToPure.filter_useless_back_calls = mp_config.filter_useless_monadic_calls; } in (* Translate the forward function *) let pure_forward = match symbolic_forward with | None -> SymbolicToPure.translate_fun_decl sp_config ctx None | Some (fwd_svs, fwd_ast) -> SymbolicToPure.translate_fun_decl sp_config (add_forward_inputs fwd_svs ctx) (Some fwd_ast) in (* Translate the backward functions *) let translate_backward (rg : T.region_var_group) : Pure.fun_decl = (* For the backward inputs/outputs initialization: we use the fact that * there are no nested borrows for now, and so that the region groups * can't have parents *) assert (rg.parents = []); let back_id = rg.id in match symbolic_backwards with | None -> (* Initialize the context - note that the ret_ty is not really * useful as we don't translate a body *) let backward_sg = RegularFunIdMap.find (A.Regular def_id, Some back_id) fun_sigs in let ctx = { ctx with bid = Some back_id; sg = backward_sg.sg } in (* Translate *) SymbolicToPure.translate_fun_decl sp_config ctx None | Some symbolic_backwards -> let input_svs, symbolic = T.RegionGroupId.nth symbolic_backwards back_id in let ctx = add_forward_inputs input_svs ctx in (* TODO: the computation of the backward inputs is a bit awckward... *) let backward_sg = RegularFunIdMap.find (A.Regular def_id, Some back_id) fun_sigs in (* We need to ignore the forward inputs, and the state input (if there is) *) let fun_info = SymbolicToPure.get_fun_effect_info fun_context.fun_infos (A.Regular def_id) (Some back_id) in let _, backward_inputs = Collections.List.split_at backward_sg.sg.inputs (num_forward_inputs + if fun_info.input_state then 1 else 0) in (* As we forbid nested borrows, the additional inputs for the backward * functions come from the borrows in the return value of the rust function: * we thus use the name "ret" for those inputs *) let backward_inputs = List.map (fun ty -> (Some "ret", ty)) backward_inputs in let ctx, backward_inputs = SymbolicToPure.fresh_vars backward_inputs ctx in (* The outputs for the backward functions, however, come from borrows * present in the input values of the rust function: for those we reuse * the names of the input values. *) let backward_outputs = List.combine backward_sg.output_names backward_sg.sg.doutputs in let ctx, backward_outputs = SymbolicToPure.fresh_vars backward_outputs ctx in let backward_inputs = T.RegionGroupId.Map.singleton back_id backward_inputs in let backward_outputs = T.RegionGroupId.Map.singleton back_id backward_outputs in (* Put everything in the context *) let ctx = { ctx with bid = Some back_id; sg = backward_sg.sg; backward_inputs; backward_outputs; } in (* Translate *) SymbolicToPure.translate_fun_decl sp_config ctx (Some symbolic) in let pure_backwards = List.map translate_backward fdef.signature.regions_hierarchy in (* Return *) (pure_forward, pure_backwards) let translate_module_to_pure (config : C.partial_config) (mp_config : Micro.config) (use_state : bool) (m : M.llbc_module) : trans_ctx * Pure.type_decl list * (bool * pure_fun_translation) list = (* Debug *) log#ldebug (lazy "translate_module_to_pure"); (* Compute the type and function contexts *) let type_context, fun_context, global_context = compute_type_fun_contexts m in let fun_infos = FA.analyze_module m fun_context.C.fun_decls global_context.C.global_decls use_state in let fun_context = { fun_decls = fun_context.fun_decls; fun_infos; } in let trans_ctx = { type_context; fun_context; global_context } in (* Translate all the type definitions *) let type_decls = SymbolicToPure.translate_type_decls m.types in (* Compute the type definition map *) let type_decls_map = Pure.TypeDeclId.Map.of_list (List.map (fun (def : Pure.type_decl) -> (def.def_id, def)) type_decls) in (* Translate all the function *signatures* *) let assumed_sigs = List.map (fun (id, sg, _, _) -> (A.Assumed id, List.map (fun _ -> None) (sg : A.fun_sig).inputs, sg)) Assumed.assumed_infos in let local_sigs = List.map (fun (fdef : A.fun_decl) -> let input_names = match fdef.body with | None -> List.map (fun _ -> None) fdef.signature.inputs | Some body -> List.map (fun (v : A.var) -> v.name) (LlbcAstUtils.fun_body_get_input_vars body) in (A.Regular fdef.def_id, input_names, fdef.signature)) m.functions in let sigs = List.append assumed_sigs local_sigs in let fun_sigs = SymbolicToPure.translate_fun_signatures fun_context.fun_infos type_context.type_infos sigs in (* Translate all the *transparent* functions *) let pure_translations = List.map (translate_function_to_pure config mp_config trans_ctx fun_sigs type_decls_map) m.functions in (* Apply the micro-passes *) let pure_translations = List.map (Micro.apply_passes_to_pure_fun_translation mp_config trans_ctx) pure_translations in (* Return *) (trans_ctx, type_decls, pure_translations) type gen_ctx = { m : M.llbc_module; extract_ctx : PureToExtract.extraction_ctx; trans_types : Pure.type_decl Pure.TypeDeclId.Map.t; trans_funs : (bool * pure_fun_translation) A.FunDeclId.Map.t; functions_with_decreases_clause : A.FunDeclId.Set.t; } (** Extraction context *) type gen_config = { mp_config : Micro.config; use_state : bool; extract_types : bool; extract_decreases_clauses : bool; extract_template_decreases_clauses : bool; extract_fun_decls : bool; extract_transparent : bool; (** If `true`, extract the transparent declarations, otherwise ignore. *) extract_opaque : bool; (** If `true`, extract the opaque declarations, otherwise ignore. *) extract_state_type : bool; (** If `true`, generate a definition/declaration for the state type *) interface : bool; (** `true` if we generate an interface file, `false` otherwise. For now, this only impacts whether we use `val` or `assume val` for the opaque definitions. In the future, we might want to extract all the declarations in an interface file, together with an implementation file if needed. *) test_unit_functions : bool; } (** Returns the pair: (has opaque type decls, has opaque fun decls) *) let module_has_opaque_decls (ctx : gen_ctx) : bool * bool = let has_opaque_types = Pure.TypeDeclId.Map.exists (fun _ (d : Pure.type_decl) -> match d.kind with Opaque -> true | _ -> false) ctx.trans_types in let has_opaque_funs = A.FunDeclId.Map.exists (fun _ ((_, (t_fwd, _)) : bool * pure_fun_translation) -> Option.is_none t_fwd.body) ctx.trans_funs in (has_opaque_types, has_opaque_funs) (** A generic utility to generate the extracted definitions: as we may want to split the definitions between different files (or not), we can control what is precisely extracted. *) let extract_definitions (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx) : unit = (* Export the definition groups to the file, in the proper order *) let export_type (qualif : ExtractToFStar.type_decl_qualif) (id : Pure.TypeDeclId.id) : unit = (* Retrive the declaration *) let def = Pure.TypeDeclId.Map.find id ctx.trans_types in (* Update the qualifier, if the type is opaque *) let is_opaque, qualif = match def.kind with | Enum _ | Struct _ -> (false, qualif) | Opaque -> let qualif = if config.interface then ExtractToFStar.TypeVal else ExtractToFStar.AssumeType in (true, qualif) in (* Extract, if the config instructs to do so (depending on whether the type * is opaque or not) *) if (is_opaque && config.extract_opaque) || ((not is_opaque) && config.extract_transparent) then ExtractToFStar.extract_type_decl ctx.extract_ctx fmt qualif def in (* Utility to check a function has a decrease clause *) let has_decreases_clause (def : Pure.fun_decl) : bool = A.FunDeclId.Set.mem def.def_id ctx.functions_with_decreases_clause in (* In case of (non-mutually) recursive functions, we use a simple procedure to * check if the forward and backward functions are mutually recursive. *) let export_functions (is_rec : bool) (pure_ls : (bool * pure_fun_translation) list) : unit = (* Concatenate the function definitions, filtering the useless forward * functions. We also make pairs: (forward function, backward function) * (the forward function contains useful information that we want to keep) *) let fls = List.concat (List.map (fun (keep_fwd, (fwd, back_ls)) -> let back_ls = List.map (fun back -> (fwd, back)) back_ls in if keep_fwd then (fwd, fwd) :: back_ls else back_ls) pure_ls) in (* Extract the decrease clauses template bodies *) if config.extract_template_decreases_clauses then List.iter (fun (_, (fwd, _)) -> let has_decr_clause = has_decreases_clause fwd in if has_decr_clause then ExtractToFStar.extract_template_decreases_clause ctx.extract_ctx fmt fwd) pure_ls; (* Extract the function definitions *) (if config.extract_fun_decls then (* Check if the functions are mutually recursive - this really works * to check if the forward and backward translations of a single * recursive function are mutually recursive *) let is_mut_rec = if is_rec then if List.length pure_ls <= 1 then not (PureUtils.functions_not_mutually_recursive (List.map fst fls)) else true else false in List.iteri (fun i (fwd_def, def) -> let is_opaque = Option.is_none fwd_def.Pure.body in let qualif = if is_opaque then if config.interface then ExtractToFStar.Val else ExtractToFStar.AssumeVal else if not is_rec then ExtractToFStar.Let else if is_mut_rec then if i = 0 then ExtractToFStar.LetRec else ExtractToFStar.And else ExtractToFStar.LetRec in let has_decr_clause = has_decreases_clause def && config.extract_decreases_clauses in (* Check if the definition needs to be filtered or not *) if ((not is_opaque) && config.extract_transparent) || (is_opaque && config.extract_opaque) then ExtractToFStar.extract_fun_decl ctx.extract_ctx fmt qualif has_decr_clause def ) fls); (* Insert unit tests if necessary *) if config.test_unit_functions then List.iter (fun (keep_fwd, (fwd, _)) -> if keep_fwd then ExtractToFStar.extract_unit_test_if_unit_fun ctx.extract_ctx fmt fwd) pure_ls in (* TODO: Check correct behaviour with opaque globals *) let export_global (id : A.GlobalDeclId.id) : unit = let global_decls = ctx.extract_ctx.trans_ctx.global_context.global_decls in let global = A.GlobalDeclId.Map.find id global_decls in let (_, (body, body_backs)) = A.FunDeclId.Map.find global.body_id ctx.trans_funs in assert (List.length body_backs = 0); let is_opaque = Option.is_none body.Pure.body in if ((not is_opaque) && config.extract_transparent) || (is_opaque && config.extract_opaque) then ExtractToFStar.extract_global_decl ctx.extract_ctx fmt global body config.interface in let export_state_type () : unit = let qualif = if config.interface then ExtractToFStar.TypeVal else ExtractToFStar.AssumeType in ExtractToFStar.extract_state_type fmt ctx.extract_ctx qualif in let export_decl (decl : M.declaration_group) : unit = match decl with | Type (NonRec id) -> if config.extract_types then export_type ExtractToFStar.Type id | Type (Rec ids) -> (* Rk.: we shouldn't have (mutually) recursive opaque types *) if config.extract_types then List.iteri (fun i id -> let qualif = if i = 0 then ExtractToFStar.Type else ExtractToFStar.And in export_type qualif id) ids | Fun (NonRec id) -> (* Lookup *) let pure_fun = A.FunDeclId.Map.find id ctx.trans_funs in (* Translate *) export_functions false [ pure_fun ] | Fun (Rec ids) -> (* General case of mutually recursive functions *) (* Lookup *) let pure_funs = List.map (fun id -> A.FunDeclId.Map.find id ctx.trans_funs) ids in (* Translate *) export_functions true pure_funs | Global id -> export_global id in (* If we need to export the state type: we try to export it after we defined * the type definitions, because if the user wants to define a model for the * type, he might want to reuse them in the state type. * More specifically: if we extract functions, we have no choice but to define * the state type before the functions, because they may reuse this state * type: in this case, we define/declare it at the very beginning. Otherwise, * we define/declare it at the very end. *) if config.extract_state_type && config.extract_fun_decls then export_state_type (); List.iter export_decl ctx.m.declarations; if config.extract_state_type && not config.extract_fun_decls then export_state_type () let extract_file (config : gen_config) (ctx : gen_ctx) (filename : string) (rust_module_name : string) (module_name : string) (custom_msg : string) (custom_imports : string list) (custom_includes : string list) : unit = (* Open the file and create the formatter *) let out = open_out filename in let fmt = Format.formatter_of_out_channel out in (* Print the headers. * Note that we don't use the OCaml formatter for purpose: we want to control * line insertion (we have to make sure that some instructions like `open MODULE` * are printed on one line!). * This is ok as long as we end up with a line break, so that the formatter's * internal count is consistent with the state of the file. *) (* Create the header *) Printf.fprintf out "(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)\n"; Printf.fprintf out "(** [%s]%s *)\n" rust_module_name custom_msg; Printf.fprintf out "module %s\n" module_name; Printf.fprintf out "open Primitives\n"; (* Add the custom imports *) List.iter (fun m -> Printf.fprintf out "open %s\n" m) custom_imports; (* Add the custom includes *) List.iter (fun m -> Printf.fprintf out "include %s\n" m) custom_includes; (* Z3 options - note that we use fuel 1 because it its useful for the decrease clauses *) Printf.fprintf out "\n#set-options \"--z3rlimit 50 --fuel 1 --ifuel 1\"\n"; (* From now onwards, we use the formatter *) (* Set the margin *) Format.pp_set_margin fmt 80; (* Create a vertical box *) Format.pp_open_vbox fmt 0; (* Extract the definitions *) extract_definitions fmt config ctx; (* Close the box and end the formatting *) Format.pp_close_box fmt (); Format.pp_print_newline fmt (); (* Some logging *) log#linfo (lazy ("Generated: " ^ filename)); (* Flush and close the file *) close_out out (** Translate a module and write the synthesized code to an output file. TODO: rename to translate_crate *) let translate_module (filename : string) (dest_dir : string) (config : config) (m : M.llbc_module) : unit = (* Translate the module to the pure AST *) let trans_ctx, trans_types, trans_funs = translate_module_to_pure config.eval_config config.mp_config config.use_state m in (* Initialize the extraction context - for now we extract only to F* *) let names_map = PureToExtract.initialize_names_map ExtractToFStar.fstar_names_map_init in let variant_concatenate_type_name = true in let fstar_fmt = ExtractToFStar.mk_formatter trans_ctx m.name variant_concatenate_type_name in let ctx = { PureToExtract.trans_ctx; names_map; fmt = fstar_fmt; indent_incr = 2 } in (* We need to compute which functions are recursive, in order to know * whether we should generate a decrease clause or not. *) let rec_functions = A.FunDeclId.Set.of_list (List.concat (List.map (fun decl -> match decl with M.Fun (Rec ids) -> ids | _ -> []) m.declarations)) in (* Register unique names for all the top-level types and functions. * Note that the order in which we generate the names doesn't matter: * we just need to generate a mapping from identifier to name, and make * sure there are no name clashes. *) let ctx = List.fold_left (fun ctx def -> ExtractToFStar.extract_type_decl_register_names ctx def) ctx trans_types in let ctx = List.fold_left (fun ctx (keep_fwd, def) -> (* Note that we generate a decrease clause for all the recursive functions *) let gen_decr_clause = A.FunDeclId.Set.mem (fst def).Pure.def_id rec_functions in ExtractToFStar.extract_fun_decl_register_names ctx keep_fwd gen_decr_clause def) ctx trans_funs in (* Open the output file *) (* First compute the filename by replacing the extension and converting the * case (rust module names are snake case) *) let module_name, extract_filebasename = match Filename.chop_suffix_opt ~suffix:".llbc" filename with | None -> (* Note that we already checked the suffix upon opening the file *) failwith "Unreachable" | Some filename -> (* Retrieve the file basename *) let basename = Filename.basename filename in (* Convert the case *) let module_name = StringUtils.to_camel_case basename in (* Concatenate *) (module_name, Filename.concat dest_dir module_name) in (* Put the translated definitions in maps *) let trans_types = Pure.TypeDeclId.Map.of_list (List.map (fun (d : Pure.type_decl) -> (d.def_id, d)) trans_types) in let trans_funs = A.FunDeclId.Map.of_list (List.map (fun ((keep_fwd, (fd, bdl)) : bool * pure_fun_translation) -> (fd.def_id, (keep_fwd, (fd, bdl)))) trans_funs) in (* Create the directory, if necessary *) if not (Sys.file_exists dest_dir) then ( log#linfo (lazy ("Creating missing directory: " ^ dest_dir)); (* Create a directory with *default* permissions *) Core_unix.mkdir_p dest_dir); (* Copy "Primitives.fst" - I couldn't find a "cp" function in the OCaml * libraries... *) let _ = let src = open_in "fstar/Primitives.fst" in let tgt_filename = Filename.concat dest_dir "Primitives.fst" in let tgt = open_out tgt_filename in try while true do (* We copy line by line *) let line = input_line src in Printf.fprintf tgt "%s\n" line done with End_of_file -> close_in src; close_out tgt; log#linfo (lazy ("Copied: " ^ tgt_filename)) in (* Extract the file(s) *) let gen_ctx = { m; extract_ctx = ctx; trans_types; trans_funs; functions_with_decreases_clause = rec_functions; } in let use_state = config.use_state in (* Extract one or several files, depending on the configuration *) if config.split_files then ( let base_gen_config = { mp_config = config.mp_config; use_state; extract_types = false; extract_decreases_clauses = config.extract_decreases_clauses; extract_template_decreases_clauses = false; extract_fun_decls = false; extract_transparent = true; extract_opaque = false; extract_state_type = false; interface = false; test_unit_functions = false; } in (* Check if there are opaque types and functions - in which case we need * to split *) let has_opaque_types, has_opaque_funs = module_has_opaque_decls gen_ctx in let has_opaque_types = has_opaque_types || use_state in (* Extract the types *) (* If there are opaque types, we extract in an interface *) let types_filename_ext = if has_opaque_types then ".fsti" else ".fst" in let types_filename = extract_filebasename ^ ".Types" ^ types_filename_ext in let types_module = module_name ^ ".Types" in let types_config = { base_gen_config with extract_types = true; extract_opaque = true; extract_state_type = use_state; interface = has_opaque_types; } in extract_file types_config gen_ctx types_filename m.M.name types_module ": type definitions" [] []; (* Extract the template clauses *) let needs_clauses_module = config.extract_decreases_clauses && not (A.FunDeclId.Set.is_empty rec_functions) in (if needs_clauses_module && config.extract_template_decreases_clauses then let clauses_filename = extract_filebasename ^ ".Clauses.Template.fst" in let clauses_module = module_name ^ ".Clauses.Template" in let clauses_config = { base_gen_config with extract_template_decreases_clauses = true } in extract_file clauses_config gen_ctx clauses_filename m.M.name clauses_module ": templates for the decreases clauses" [ types_module ] []); (* Extract the opaque functions, if needed *) let opaque_funs_module = if has_opaque_funs then ( let opaque_filename = extract_filebasename ^ ".Opaque.fsti" in let opaque_module = module_name ^ ".Opaque" in let opaque_config = { base_gen_config with extract_fun_decls = true; extract_transparent = false; extract_opaque = true; interface = true; } in extract_file opaque_config gen_ctx opaque_filename m.M.name opaque_module ": opaque function definitions" [] [ types_module ]; [ opaque_module ]) else [] in (* Extract the functions *) let fun_filename = extract_filebasename ^ ".Funs.fst" in let fun_module = module_name ^ ".Funs" in let fun_config = { base_gen_config with extract_fun_decls = true; test_unit_functions = config.test_unit_functions; } in let clauses_module = if needs_clauses_module then [ module_name ^ ".Clauses" ] else [] in extract_file fun_config gen_ctx fun_filename m.M.name fun_module ": function definitions" [] ([ types_module ] @ opaque_funs_module @ clauses_module)) else let gen_config = { mp_config = config.mp_config; use_state; extract_types = true; extract_decreases_clauses = config.extract_decreases_clauses; extract_template_decreases_clauses = config.extract_template_decreases_clauses; extract_fun_decls = true; extract_transparent = true; extract_opaque = true; extract_state_type = use_state; interface = false; test_unit_functions = config.test_unit_functions; } in (* Add the extension for F* *) let extract_filename = extract_filebasename ^ ".fst" in extract_file gen_config gen_ctx extract_filename m.M.name module_name "" [] []