open Errors open CfimAstUtils open Pure open PureUtils module Id = Identifiers module M = Modules module S = SymbolicAst module TA = TypesAnalysis module L = Logging module PP = PrintPure (** The local logger *) let log = L.symbolic_to_pure_log type regular_fun_id = A.fun_id * T.RegionGroupId.id option [@@deriving show, ord] (** We use this type as a key for lookups *) module RegularFunIdOrderedType = struct type t = regular_fun_id let compare = compare_regular_fun_id let to_string = show_regular_fun_id let pp_t = pp_regular_fun_id let show_t = show_regular_fun_id end module RegularFunIdMap = Collections.MakeMap (RegularFunIdOrderedType) type type_context = { cfim_type_defs : T.type_def TypeDefId.Map.t; types_infos : TA.type_infos; (* TODO: rename to type_infos *) } type fun_sig_named_outputs = { sg : fun_sig; (** A function signature *) output_names : string option list; (** In case the signature is for a backward function, we may provides names for the outputs. The reason is that the outputs of backward functions come from (in case there are no nested borrows) borrows present in the inputs of the original rust function. In this situation, we can use the names of those inputs to name the outputs. Those names are very useful to generate beautiful codes (we may need to introduce temporary variables in the bodies of the backward functions to store the returned values, in which case we use those names). *) } type fun_context = { cfim_fun_defs : A.fun_def FunDefId.Map.t; fun_sigs : fun_sig_named_outputs RegularFunIdMap.t; (** *) } type call_info = { forward : S.call; backwards : V.abs T.RegionGroupId.Map.t; (** TODO: not sure we need this anymore *) } (** Whenever we translate a function call or an ended abstraction, we store the related information (this is useful when translating ended children abstractions) *) type bs_ctx = { type_context : type_context; fun_context : fun_context; fun_def : A.fun_def; bid : T.RegionGroupId.id option; (** TODO: rename *) ret_ty : ty; (** The return type - we use it to translate `Panic` *) sv_to_var : var V.SymbolicValueId.Map.t; (** Whenever we encounter a new symbolic value (introduced because of a symbolic expansion or upon ending an abstraction, for instance) we introduce a new variable (with a let-binding). *) var_counter : VarId.generator; forward_inputs : var list; (** The input parameters for the forward function *) backward_inputs : var list T.RegionGroupId.Map.t; (** The input parameters for the backward functions *) backward_outputs : var list T.RegionGroupId.Map.t; (** The variables that the backward functions will output *) calls : call_info V.FunCallId.Map.t; (** The function calls we encountered so far *) abstractions : V.abs V.AbstractionId.Map.t; (** The ended abstractions we encountered so far *) } (** Body synthesis context *) (* TODO: move *) let bs_ctx_to_value_formatter (ctx : bs_ctx) : Print.CfimAst.ast_formatter = Print.CfimAst.fun_def_to_ast_formatter ctx.type_context.cfim_type_defs ctx.fun_context.cfim_fun_defs ctx.fun_def let type_def_to_string (ctx : bs_ctx) (def : type_def) : string = let type_params = def.type_params in let type_defs = ctx.type_context.cfim_type_defs in let fmt = PrintPure.mk_type_formatter type_defs type_params in PrintPure.type_def_to_string fmt def let typed_rvalue_to_string (ctx : bs_ctx) (v : typed_rvalue) : string = let type_params = ctx.fun_def.signature.type_params in let type_defs = ctx.type_context.cfim_type_defs in let fun_defs = ctx.fun_context.cfim_fun_defs in let fmt = PrintPure.mk_ast_formatter type_defs fun_defs type_params in PrintPure.typed_rvalue_to_string fmt v let fun_sig_to_string (ctx : bs_ctx) (sg : fun_sig) : string = let type_params = sg.type_params in let type_defs = ctx.type_context.cfim_type_defs in let fun_defs = ctx.fun_context.cfim_fun_defs in let fmt = PrintPure.mk_ast_formatter type_defs fun_defs type_params in PrintPure.fun_sig_to_string fmt sg let fun_def_to_string (ctx : bs_ctx) (def : Pure.fun_def) : string = let type_params = def.signature.type_params in let type_defs = ctx.type_context.cfim_type_defs in let fun_defs = ctx.fun_context.cfim_fun_defs in let fmt = PrintPure.mk_ast_formatter type_defs fun_defs type_params in PrintPure.fun_def_to_string fmt def (* TODO: move *) let abs_to_string (ctx : bs_ctx) (abs : V.abs) : string = let fmt = bs_ctx_to_value_formatter ctx in let fmt = Print.CfimAst.ast_to_value_formatter fmt in let indent = "" in let indent_incr = " " in Print.Values.abs_to_string fmt indent indent_incr abs let get_instantiated_fun_sig (fun_id : A.fun_id) (back_id : T.RegionGroupId.id option) (tys : ty list) (ctx : bs_ctx) : inst_fun_sig = (* Lookup the non-instantiated function signature *) let sg = (RegularFunIdMap.find (fun_id, back_id) ctx.fun_context.fun_sigs).sg in (* Create the substitution *) let tsubst = make_type_subst sg.type_params tys in (* Apply *) fun_sig_substitute tsubst sg let bs_ctx_lookup_cfim_type_def (id : TypeDefId.id) (ctx : bs_ctx) : T.type_def = TypeDefId.Map.find id ctx.type_context.cfim_type_defs let bs_ctx_lookup_cfim_fun_def (id : FunDefId.id) (ctx : bs_ctx) : A.fun_def = FunDefId.Map.find id ctx.fun_context.cfim_fun_defs (* TODO: move *) let bs_ctx_lookup_local_function_sig (def_id : FunDefId.id) (back_id : T.RegionGroupId.id option) (ctx : bs_ctx) : fun_sig = let id = (A.Local def_id, back_id) in (RegularFunIdMap.find id ctx.fun_context.fun_sigs).sg let bs_ctx_register_forward_call (call_id : V.FunCallId.id) (forward : S.call) (ctx : bs_ctx) : bs_ctx = let calls = ctx.calls in assert (not (V.FunCallId.Map.mem call_id calls)); let info = { forward; backwards = T.RegionGroupId.Map.empty } in let calls = V.FunCallId.Map.add call_id info calls in { ctx with calls } let bs_ctx_register_backward_call (abs : V.abs) (ctx : bs_ctx) : bs_ctx * fun_id = (* Insert the abstraction in the call informations *) let back_id = abs.back_id in let info = V.FunCallId.Map.find abs.call_id ctx.calls in assert (not (T.RegionGroupId.Map.mem back_id info.backwards)); let backwards = T.RegionGroupId.Map.add back_id abs info.backwards in let info = { info with backwards } in let calls = V.FunCallId.Map.add abs.call_id info ctx.calls in (* Insert the abstraction in the abstractions map *) let abstractions = ctx.abstractions in assert (not (V.AbstractionId.Map.mem abs.abs_id abstractions)); let abstractions = V.AbstractionId.Map.add abs.abs_id abs abstractions in (* Retrieve the fun_id *) let fun_id = match info.forward.call_id with | S.Fun (fid, _) -> Regular (fid, Some abs.back_id) | S.Unop _ | S.Binop _ -> failwith "Unreachable" in (* Update the context and return *) ({ ctx with calls; abstractions }, fun_id) let rec translate_sty (ty : T.sty) : ty = let translate = translate_sty in match ty with | T.Adt (type_id, regions, tys) -> ( (* Can't translate types with regions for now *) assert (regions = []); let tys = List.map translate tys in match type_id with | T.AdtId adt_id -> Adt (AdtId adt_id, tys) | T.Tuple -> Adt (Tuple, tys) | T.Assumed T.Box -> ( match tys with | [ ty ] -> ty | _ -> failwith "Box type with incorrect number of arguments")) | TypeVar vid -> TypeVar vid | Bool -> Bool | Char -> Char | Never -> failwith "Unreachable" | Integer int_ty -> Integer int_ty | Str -> Str | Array ty -> Array (translate ty) | Slice ty -> Slice (translate ty) | Ref (_, rty, _) -> translate rty let translate_field (f : T.field) : field = let field_name = f.field_name in let field_ty = translate_sty f.field_ty in { field_name; field_ty } let translate_fields (fl : T.field list) : field list = List.map translate_field fl let translate_variant (v : T.variant) : variant = let variant_name = v.variant_name in let fields = translate_fields v.fields in { variant_name; fields } let translate_variants (vl : T.variant list) : variant list = List.map translate_variant vl (** Translate a type def kind to IM *) let translate_type_def_kind (kind : T.type_def_kind) : type_def_kind = match kind with | T.Struct fields -> Struct (translate_fields fields) | T.Enum variants -> Enum (translate_variants variants) (** Translate a type definition from IM TODO: this is not symbolic to pure but IM to pure. Still, I don't see the point of moving this definition for now. *) let translate_type_def (def : T.type_def) : type_def = (* Translate *) let def_id = def.T.def_id in let name = def.name in (* Can't translate types with regions for now *) assert (def.region_params = []); let type_params = def.type_params in let kind = translate_type_def_kind def.T.kind in { def_id; name; type_params; kind } (** Translate a type, seen as an input/output of a forward function (preserve all borrows, etc.) *) let rec translate_fwd_ty (types_infos : TA.type_infos) (ty : 'r T.ty) : ty = let translate = translate_fwd_ty types_infos in match ty with | T.Adt (type_id, regions, tys) -> ( (* Can't translate types with regions for now *) assert (regions = []); (* No general parametricity for now *) assert (not (List.exists (TypesUtils.ty_has_borrows types_infos) tys)); (* Translate the type parameters *) let tys = List.map translate tys in (* Eliminate boxes *) match type_id with | AdtId adt_id -> Adt (AdtId adt_id, tys) | Tuple -> Adt (Tuple, tys) | T.Assumed T.Box -> ( match tys with | [ bty ] -> bty | _ -> failwith "Unreachable: boxes receive exactly one type parameter")) | TypeVar vid -> TypeVar vid | Bool -> Bool | Char -> Char | Never -> failwith "Unreachable" | Integer int_ty -> Integer int_ty | Str -> Str | Array ty -> assert (not (TypesUtils.ty_has_borrows types_infos ty)); Array (translate ty) | Slice ty -> assert (not (TypesUtils.ty_has_borrows types_infos ty)); Slice (translate ty) | Ref (_, rty, _) -> translate rty (** Simply calls [translate_fwd_ty] *) let ctx_translate_fwd_ty (ctx : bs_ctx) (ty : 'r T.ty) : ty = let types_infos = ctx.type_context.types_infos in translate_fwd_ty types_infos ty (** Translate a type, when some regions may have ended. We return an option, because the translated type may be empty. [inside_mut]: are we inside a mutable borrow? *) let rec translate_back_ty (types_infos : TA.type_infos) (keep_region : 'r -> bool) (inside_mut : bool) (ty : 'r T.ty) : ty option = let translate = translate_back_ty types_infos keep_region inside_mut in (* A small helper for "leave" types *) let wrap ty = if inside_mut then Some ty else None in match ty with | T.Adt (type_id, _, tys) -> ( match type_id with | T.AdtId _ -> (* Don't accept ADTs (which are not tuples) with borrows for now *) assert (not (TypesUtils.ty_has_borrows types_infos ty)); let type_id = match type_id with | T.AdtId id -> AdtId id | T.Tuple | T.Assumed T.Box -> failwith "Unreachable" in if inside_mut then let tys_t = List.filter_map translate tys in Some (Adt (type_id, tys_t)) else None | Assumed T.Box -> ( (* Don't accept ADTs (which are not tuples) with borrows for now *) assert (not (TypesUtils.ty_has_borrows types_infos ty)); (* Eliminate the box *) match tys with | [ bty ] -> translate bty | _ -> failwith "Unreachable: boxes receive exactly one type parameter") | T.Tuple -> ( (* Tuples can contain borrows (which we eliminated) *) let tys_t = List.filter_map translate tys in match tys_t with [] -> None | _ -> Some (Adt (Tuple, tys_t)))) | TypeVar vid -> wrap (TypeVar vid) | Bool -> wrap Bool | Char -> wrap Char | Never -> failwith "Unreachable" | Integer int_ty -> wrap (Integer int_ty) | Str -> wrap Str | Array ty -> ( assert (not (TypesUtils.ty_has_borrows types_infos ty)); match translate ty with None -> None | Some ty -> Some (Array ty)) | Slice ty -> ( assert (not (TypesUtils.ty_has_borrows types_infos ty)); match translate ty with None -> None | Some ty -> Some (Slice ty)) | Ref (r, rty, rkind) -> ( match rkind with | T.Shared -> (* Ignore shared references, unless we are below a mutable borrow *) if inside_mut then translate rty else None | T.Mut -> (* Dive in, remembering the fact that we are inside a mutable borrow *) let inside_mut = true in if keep_region r then translate_back_ty types_infos keep_region inside_mut rty else None) (** Simply calls [translate_back_ty] *) let ctx_translate_back_ty (ctx : bs_ctx) (keep_region : 'r -> bool) (inside_mut : bool) (ty : 'r T.ty) : ty option = let types_infos = ctx.type_context.types_infos in translate_back_ty types_infos keep_region inside_mut ty (** List the ancestors of an abstraction *) let list_ancestor_abstractions_ids (ctx : bs_ctx) (abs : V.abs) : V.AbstractionId.id list = (* We could do something more "elegant" without references, but it is * so much simpler to use references... *) let abs_set = ref V.AbstractionId.Set.empty in let rec gather (abs_id : V.AbstractionId.id) : unit = if V.AbstractionId.Set.mem abs_id !abs_set then () else ( abs_set := V.AbstractionId.Set.add abs_id !abs_set; let abs = V.AbstractionId.Map.find abs_id ctx.abstractions in List.iter gather abs.original_parents) in List.iter gather abs.original_parents; let ids = !abs_set in (* List the ancestors, in the proper order *) let call_info = V.FunCallId.Map.find abs.call_id ctx.calls in List.filter (fun id -> V.AbstractionId.Set.mem id ids) call_info.forward.abstractions let list_ancestor_abstractions (ctx : bs_ctx) (abs : V.abs) : V.abs list = let abs_ids = list_ancestor_abstractions_ids ctx abs in List.map (fun id -> V.AbstractionId.Map.find id ctx.abstractions) abs_ids (** Translate a function signature. Note that the function also takes a list of names for the inputs, and computes, for every output for the backward functions, a corresponding name (outputs for backward functions come from borrows in the inputs of the forward function). *) let translate_fun_sig (types_infos : TA.type_infos) (sg : A.fun_sig) (input_names : string option list) (bid : T.RegionGroupId.id option) : fun_sig_named_outputs = (* Retrieve the list of parent backward functions *) let gid, parents = match bid with | None -> (None, T.RegionGroupId.Set.empty) | Some bid -> let parents = list_parent_region_groups sg bid in (Some bid, parents) in (* List the inputs for: * - the forward function * - the parent backward functions, in proper order * - the current backward function (if it is a backward function) *) let fwd_inputs = List.map (translate_fwd_ty types_infos) sg.inputs in (* For the backward functions: for now we don't supported nested borrows, * so just check that there aren't parent regions *) assert (T.RegionGroupId.Set.is_empty parents); (* Small helper to translate types for backward functions *) let translate_back_ty_for_gid (gid : T.RegionGroupId.id) : T.sty -> ty option = let rg = T.RegionGroupId.nth sg.regions_hierarchy gid in let regions = T.RegionVarId.Set.of_list rg.regions in let keep_region r = match r with | T.Static -> raise Unimplemented | T.Var r -> T.RegionVarId.Set.mem r regions in let inside_mut = false in translate_back_ty types_infos keep_region inside_mut in (* Compute the additinal inputs for the current function, if it is a backward * function *) let back_inputs = match gid with | None -> [] | Some gid -> (* For now, we don't allow nested borrows, so the additional inputs to the * backward function can only come from borrows that were returned like * in (for the backward function we introduce for 'a): * ``` * fn f<'a>(...) -> &'a mut u32; * ``` * Upon ending the abstraction for 'a, we need to get back the borrow * the function returned. *) List.filter_map (translate_back_ty_for_gid gid) [ sg.output ] in let inputs = List.append fwd_inputs back_inputs in (* Outputs *) let output_names, outputs = match gid with | None -> (* This is a forward function: there is one (unnamed) output *) ([ None ], [ translate_fwd_ty types_infos sg.output ]) | Some gid -> (* This is a backward function: there might be several outputs. * The outputs are the borrows inside the regions of the abstractions * and which are present in the input values. For instance, see: * ``` * fn f<'a>(x : &'a mut u32) -> ...; * ``` * Upon ending the abstraction for 'a, we give back the borrow which * was consumed through the `x` parameter. *) let outputs = List.map (fun (name, input_ty) -> (name, translate_back_ty_for_gid gid input_ty)) (List.combine input_names sg.inputs) in (* Filter *) let outputs = List.filter (fun (_, opt_ty) -> Option.is_some opt_ty) outputs in let outputs = List.map (fun (name, opt_ty) -> (name, Option.get opt_ty)) outputs in List.split outputs in (* Type parameters *) let type_params = sg.type_params in (* Return *) let sg = { type_params; inputs; outputs } in { sg; output_names } let fresh_named_var_for_symbolic_value (basename : string option) (sv : V.symbolic_value) (ctx : bs_ctx) : bs_ctx * var = (* Generate the fresh variable *) let id, var_counter = VarId.fresh ctx.var_counter in let ty = ctx_translate_fwd_ty ctx sv.sv_ty in let var = { id; basename; ty } in (* Insert in the map *) let sv_to_var = V.SymbolicValueId.Map.add sv.sv_id var ctx.sv_to_var in (* Update the context *) let ctx = { ctx with var_counter; sv_to_var } in (* Return *) (ctx, var) let fresh_var_for_symbolic_value (sv : V.symbolic_value) (ctx : bs_ctx) : bs_ctx * var = fresh_named_var_for_symbolic_value None sv ctx let fresh_vars_for_symbolic_values (svl : V.symbolic_value list) (ctx : bs_ctx) : bs_ctx * var list = List.fold_left_map (fun ctx sv -> fresh_var_for_symbolic_value sv ctx) ctx svl let fresh_named_vars_for_symbolic_values (svl : (string option * V.symbolic_value) list) (ctx : bs_ctx) : bs_ctx * var list = List.fold_left_map (fun ctx (name, sv) -> fresh_named_var_for_symbolic_value name sv ctx) ctx svl (** This generates a fresh variable **which is not to be linked to any symbolic value** *) let fresh_var (basename : string option) (ty : ty) (ctx : bs_ctx) : bs_ctx * var = (* Generate the fresh variable *) let id, var_counter = VarId.fresh ctx.var_counter in let var = { id; basename; ty } in (* Update the context *) let ctx = { ctx with var_counter } in (* Return *) (ctx, var) let fresh_vars (vars : (string option * ty) list) (ctx : bs_ctx) : bs_ctx * var list = List.fold_left_map (fun ctx (name, ty) -> fresh_var name ty ctx) ctx vars let lookup_var_for_symbolic_value (sv : V.symbolic_value) (ctx : bs_ctx) : var = V.SymbolicValueId.Map.find sv.sv_id ctx.sv_to_var (** Peel boxes as long as the value is of the form `Box` *) let rec unbox_typed_value (v : V.typed_value) : V.typed_value = match (v.value, v.ty) with | V.Adt av, T.Adt (T.Assumed T.Box, _, _) -> ( match av.field_values with | [ bv ] -> unbox_typed_value bv | _ -> failwith "Unreachable") | _ -> v (** Translate a typed value. It is used, for instance, on values used as inputs for function calls. **IMPORTANT**: this function makes the assumption that the typed value doesn't contain ⊥. This means in particular that symbolic values don't contain ended regions. TODO: we might want to remember in the symbolic AST the set of ended regions, at the points where we need it, for sanity checks (though the sanity checks in the symbolic interpreter should be enough). The points where we need this set so far: - function call - end abstraction - return *) let rec typed_value_to_rvalue (ctx : bs_ctx) (v : V.typed_value) : typed_rvalue = (* We need to ignore boxes *) let v = unbox_typed_value v in let translate = typed_value_to_rvalue ctx in let value = match v.value with | V.Concrete cv -> RvConcrete cv | Adt av -> let variant_id = av.variant_id in let field_values = List.map translate av.field_values in RvAdt { variant_id; field_values } | Bottom -> failwith "Unreachable" | Loan lc -> ( match lc with | SharedLoan (_, v) -> (translate v).value | MutLoan _ -> failwith "Unreachable") | Borrow bc -> ( match bc with | V.SharedBorrow (mv, _) -> (* The meta-value stored in the shared borrow was added especially * for this case (because we can't use the borrow id for lookups) *) (translate mv).value | V.InactivatedMutBorrow _ -> failwith "Unreachable" | V.MutBorrow (_, v) -> (* Borrows are the identity in the extraction *) (translate v).value) | Symbolic sv -> let var = lookup_var_for_symbolic_value sv ctx in (mk_typed_rvalue_from_var var).value in let ty = ctx_translate_fwd_ty ctx v.ty in let value = { value; ty } in value (** Explore an abstraction value and convert it to a consumed value by collecting all the meta-values from the ended *loans*. Consumed values are rvalues, because when an abstraction ends, we introduce a call to a backward function in the synthesized program, which takes as inputs those consumed values: ``` // Rust: fn choose<'a>(b: bool, x : &'a mut u32, y : &'a mut u32) -> &'a mut u32; // Synthesis: let ... = choose_back b x y nz in ^^ ``` *) let rec typed_avalue_to_consumed (ctx : bs_ctx) (av : V.typed_avalue) : typed_rvalue option = let translate = typed_avalue_to_consumed ctx in match av.value with | AConcrete _ -> failwith "Unreachable" | AAdt adt_v -> ( (* Translate the field values *) let field_values = List.filter_map translate adt_v.field_values in (* For now, only tuples can contain borrows *) let adt_id, _, _ = TypesUtils.ty_as_adt av.ty in match adt_id with | T.AdtId _ | T.Assumed T.Box -> assert (field_values = []); None | T.Tuple -> (* Return *) let variant_id = adt_v.variant_id in if field_values = [] then None else let value = RvAdt { variant_id; field_values } in let ty = ctx_translate_fwd_ty ctx av.ty in let rv = { value; ty } in Some rv) | ABottom -> failwith "Unreachable" | ALoan lc -> aloan_content_to_consumed ctx lc | ABorrow bc -> aborrow_content_to_consumed ctx bc | ASymbolic aproj -> aproj_to_consumed ctx aproj | AIgnored -> None and aloan_content_to_consumed (ctx : bs_ctx) (lc : V.aloan_content) : typed_rvalue option = match lc with | AMutLoan (_, _) | ASharedLoan (_, _, _) -> failwith "Unreachable" | AEndedMutLoan { child = _; given_back = _; given_back_meta } -> (* Return the meta-value *) Some (typed_value_to_rvalue ctx given_back_meta) | AEndedSharedLoan (_, _) -> (* We don't dive into shared loans: there is nothing to give back * inside (note that there could be a mutable borrow in the shared * value, pointing to a mutable loan in the child avalue, but this * borrow is in practice immutable) *) None | AIgnoredMutLoan (_, _) -> (* There can be *inner* not ended mutable loans, but not outer ones *) failwith "Unreachable" | AEndedIgnoredMutLoan _ -> (* This happens with nested borrows: we need to dive in *) raise Unimplemented | AIgnoredSharedLoan _ -> (* Ignore *) None and aborrow_content_to_consumed (_ctx : bs_ctx) (bc : V.aborrow_content) : typed_rvalue option = match bc with | V.AMutBorrow (_, _, _) | ASharedBorrow _ | AIgnoredMutBorrow (_, _) -> failwith "Unreachable" | AEndedMutBorrow (_, _) -> (* We collect consumed values: ignore *) None | AEndedIgnoredMutBorrow _ -> (* This happens with nested borrows: we need to dive in *) raise Unimplemented | AEndedSharedBorrow | AProjSharedBorrow _ -> (* Ignore *) None and aproj_to_consumed (ctx : bs_ctx) (aproj : V.aproj) : typed_rvalue option = match aproj with | V.AEndedProjLoans (msv, []) -> (* The symbolic value was left unchanged *) let var = lookup_var_for_symbolic_value msv ctx in Some (mk_typed_rvalue_from_var var) | V.AEndedProjLoans (_, [ (mnv, child_aproj) ]) -> assert (child_aproj = AIgnoredProjBorrows); (* The symbolic value was updated *) let var = lookup_var_for_symbolic_value mnv ctx in Some (mk_typed_rvalue_from_var var) | V.AEndedProjLoans (_, _) -> (* The symbolic value was updated, and the given back values come from sevearl * abstractions *) raise Unimplemented | AEndedProjBorrows _ -> (* We consider consumed values *) None | AIgnoredProjBorrows | AProjLoans (_, _) | AProjBorrows (_, _) -> failwith "Unreachable" (** Convert the abstraction values in an abstraction to consumed values. See [typed_avalue_to_consumed]. *) let abs_to_consumed (ctx : bs_ctx) (abs : V.abs) : typed_rvalue list = log#ldebug (lazy ("abs_to_consumed:\n" ^ abs_to_string ctx abs)); List.filter_map (typed_avalue_to_consumed ctx) abs.avalues let translate_mprojection_elem (pe : E.projection_elem) : projection_elem option = match pe with | Deref | DerefBox -> None | Field (pkind, field_id) -> Some { pkind; field_id } let translate_mprojection (p : E.projection) : projection = List.filter_map translate_mprojection_elem p (** Translate a "meta"-place *) let translate_mplace (p : S.mplace) : mplace = let name = p.bv.name in let projection = translate_mprojection p.projection in { name; projection } let translate_opt_mplace (p : S.mplace option) : mplace option = match p with None -> None | Some p -> Some (translate_mplace p) (** Explore an abstraction value and convert it to a given back value by collecting all the meta-values from the ended *borrows*. Given back values are lvalues, because when an abstraction ends, we introduce a call to a backward function in the synthesized program, which introduces new values: ``` let (nx, ny) = f_back ... in ^^^^^^^^ ``` [mp]: it is possible to provide some meta-place information, to guide the heuristics which later find pretty names for the variables. *) let rec typed_avalue_to_given_back (mp : mplace option) (av : V.typed_avalue) (ctx : bs_ctx) : bs_ctx * typed_lvalue option = match av.value with | AConcrete _ -> failwith "Unreachable" | AAdt adt_v -> ( (* Translate the field values *) (* For now we forget the meta-place information so that it doesn't get used * by several fields (which would then all have the same name...), but we * might want to do something smarter *) let mp = None in let ctx, field_values = List.fold_left_map (fun ctx fv -> typed_avalue_to_given_back mp fv ctx) ctx adt_v.field_values in let field_values = List.filter_map (fun x -> x) field_values in (* For now, only tuples can contain borrows *) let adt_id, _, _ = TypesUtils.ty_as_adt av.ty in match adt_id with | T.AdtId _ | T.Assumed T.Box -> assert (field_values = []); (ctx, None) | T.Tuple -> (* Return *) let variant_id = adt_v.variant_id in assert (variant_id = None); if field_values = [] then (ctx, None) else let value = LvAdt { variant_id = None; field_values } in let ty = ctx_translate_fwd_ty ctx av.ty in let lv : typed_lvalue = { value; ty } in (ctx, Some lv)) | ABottom -> failwith "Unreachable" | ALoan lc -> aloan_content_to_given_back mp lc ctx | ABorrow bc -> aborrow_content_to_given_back mp bc ctx | ASymbolic aproj -> aproj_to_given_back mp aproj ctx | AIgnored -> (ctx, None) and aloan_content_to_given_back (_mp : mplace option) (lc : V.aloan_content) (ctx : bs_ctx) : bs_ctx * typed_lvalue option = match lc with | AMutLoan (_, _) | ASharedLoan (_, _, _) -> failwith "Unreachable" | AEndedMutLoan { child = _; given_back = _; given_back_meta = _ } | AEndedSharedLoan (_, _) -> (* We consider given back values, and thus ignore those *) (ctx, None) | AIgnoredMutLoan (_, _) -> (* There can be *inner* not ended mutable loans, but not outer ones *) failwith "Unreachable" | AEndedIgnoredMutLoan _ -> (* This happens with nested borrows: we need to dive in *) raise Unimplemented | AIgnoredSharedLoan _ -> (* Ignore *) (ctx, None) and aborrow_content_to_given_back (mp : mplace option) (bc : V.aborrow_content) (ctx : bs_ctx) : bs_ctx * typed_lvalue option = match bc with | V.AMutBorrow (_, _, _) | ASharedBorrow _ | AIgnoredMutBorrow (_, _) -> failwith "Unreachable" | AEndedMutBorrow (mv, _) -> (* Return the meta-value *) let ctx, var = fresh_var_for_symbolic_value mv ctx in (ctx, Some (mk_typed_lvalue_from_var var mp)) | AEndedIgnoredMutBorrow _ -> (* This happens with nested borrows: we need to dive in *) raise Unimplemented | AEndedSharedBorrow | AProjSharedBorrow _ -> (* Ignore *) (ctx, None) and aproj_to_given_back (mp : mplace option) (aproj : V.aproj) (ctx : bs_ctx) : bs_ctx * typed_lvalue option = match aproj with | V.AEndedProjLoans (_, child_projs) -> (* There may be children borrow projections in case of nested borrows, * in which case we need to dive in - we disallow nested borrows for now *) assert ( List.for_all (fun (_, aproj) -> aproj = V.AIgnoredProjBorrows) child_projs); (ctx, None) | AEndedProjBorrows mv -> (* Return the meta-value *) let ctx, var = fresh_var_for_symbolic_value mv ctx in (ctx, Some (mk_typed_lvalue_from_var var mp)) | AIgnoredProjBorrows | AProjLoans (_, _) | AProjBorrows (_, _) -> failwith "Unreachable" (** Convert the abstraction values in an abstraction to given back values. See [typed_avalue_to_given_back]. *) let abs_to_given_back (mpl : mplace option list) (abs : V.abs) (ctx : bs_ctx) : bs_ctx * typed_lvalue list = let avalues = List.combine mpl abs.avalues in let ctx, values = List.fold_left_map (fun ctx (mp, av) -> typed_avalue_to_given_back mp av ctx) ctx avalues in let values = List.filter_map (fun x -> x) values in (ctx, values) (** Simply calls [abs_to_given_back] *) let abs_to_given_back_no_mp (abs : V.abs) (ctx : bs_ctx) : bs_ctx * typed_lvalue list = let mpl = List.map (fun _ -> None) abs.avalues in abs_to_given_back mpl abs ctx (** Return the ordered list of the (transitive) parents of a given abstraction. Is used for instance when collecting the input values given to all the parent functions, in order to properly instantiate an *) let get_abs_ancestors (ctx : bs_ctx) (abs : V.abs) : S.call * V.abs list = let call_info = V.FunCallId.Map.find abs.call_id ctx.calls in let abs_ancestors = list_ancestor_abstractions ctx abs in (call_info.forward, abs_ancestors) let rec translate_expression (e : S.expression) (ctx : bs_ctx) : expression = match e with | S.Return opt_v -> translate_return opt_v ctx | Panic -> Value (mk_result_fail_rvalue ctx.ret_ty, None) | FunCall (call, e) -> translate_function_call call e ctx | EndAbstraction (abs, e) -> translate_end_abstraction abs e ctx | Expansion (p, sv, exp) -> translate_expansion p sv exp ctx | Meta (meta, e) -> translate_meta meta e ctx and translate_return (opt_v : V.typed_value option) (ctx : bs_ctx) : expression = (* There are two cases: - either we are translating a forward function, in which case the optional value should be `Some` (it is the returned value) - or we are translating a backward function, in which case it should be `None` *) match ctx.bid with | None -> (* Forward function *) let v = Option.get opt_v in let v = typed_value_to_rvalue ctx v in Value (mk_result_return_rvalue v, None) | Some bid -> (* Backward function *) (* Sanity check *) assert (opt_v = None); (* We simply need to return the variables in which we stored the values * we need to give back. * See the explanations for the [SynthInput] case in [translate_end_abstraction] *) let backward_outputs = T.RegionGroupId.Map.find bid ctx.backward_outputs in let field_values = List.map mk_typed_rvalue_from_var backward_outputs in let ret_value = RvAdt { variant_id = None; field_values } in let ret_tys = List.map (fun (v : typed_rvalue) -> v.ty) field_values in let ret_ty = Adt (Tuple, ret_tys) in let ret_value : typed_rvalue = { value = ret_value; ty = ret_ty } in Value (mk_result_return_rvalue ret_value, None) and translate_function_call (call : S.call) (e : S.expression) (ctx : bs_ctx) : expression = (* Translate the function call *) let type_params = List.map (ctx_translate_fwd_ty ctx) call.type_params in let args = List.map (typed_value_to_rvalue ctx) call.args in let args_mplaces = List.map translate_opt_mplace call.args_places in let dest_mplace = translate_opt_mplace call.dest_place in let ctx, dest = fresh_var_for_symbolic_value call.dest ctx in (* Retrieve the function id, and register the function call in the context * if necessary. *) let ctx, func, monadic = match call.call_id with | S.Fun (fid, call_id) -> let ctx = bs_ctx_register_forward_call call_id call ctx in let func = Regular (fid, None) in (ctx, func, true) | S.Unop E.Not -> (ctx, Unop Not, false) | S.Unop E.Neg -> ( match args with | [ arg ] -> let int_ty = ty_as_integer arg.ty in (* Note that negation can lead to an overflow and thus fail (it * is thus monadic) *) (ctx, Unop (Neg int_ty), true) | _ -> failwith "Unreachable") | S.Binop binop -> ( match args with | [ arg0; arg1 ] -> let int_ty0 = ty_as_integer arg0.ty in let int_ty1 = ty_as_integer arg1.ty in assert (int_ty0 = int_ty1); let monadic = binop_can_fail binop in (ctx, Binop (binop, int_ty0), monadic) | _ -> failwith "Unreachable") in let args = List.map (fun (arg, mp) -> Value (arg, mp)) (List.combine args args_mplaces) in let call = { func; type_params; args } in let call = Call call in (* Translate the next expression *) let e = translate_expression e ctx in (* Put together *) Let (monadic, mk_typed_lvalue_from_var dest dest_mplace, call, e) and translate_end_abstraction (abs : V.abs) (e : S.expression) (ctx : bs_ctx) : expression = log#ldebug (lazy ("translate_end_abstraction: abstraction kind: " ^ V.show_abs_kind abs.kind)); match abs.kind with | V.SynthInput -> (* When we end an input abstraction, this input abstraction gets back * the borrows which it introduced in the context through the input * values: by listing those values, we get the values which are given * back by one of the backward functions we are synthesizing. *) (* Note that we don't support nested borrows for now: if we find * an ended synthesized input abstraction, it must be the one corresponding * to the backward function wer are synthesizing, it can't be the one * for a parent backward function. *) let bid = Option.get ctx.bid in assert (abs.back_id = bid); (* The translation is done as follows: * - for a given backward function, we choose a set of variables `v_i` * - when we detect the ended input abstraction which corresponds * to the backward function, and which consumed the values `consumed_i`, * we introduce: * ``` * let v_i = consumed_i in * ... * ``` * Then, when we reach the `Return` node, we introduce: * ``` * (v_i) * ``` * *) (* First, get the given back variables *) let given_back_variables = T.RegionGroupId.Map.find bid ctx.backward_outputs in (* Get the list of values consumed by the abstraction upon ending *) let consumed_values = abs_to_consumed ctx abs in (* Group the two lists *) let variables_values = List.combine given_back_variables consumed_values in (* Sanity check: the two lists match (same types) *) List.iter (fun (var, v) -> assert ((var : var).ty = (v : typed_rvalue).ty)) variables_values; (* Translate the next expression *) let e = translate_expression e ctx in (* Generate the assignemnts *) let monadic = false in List.fold_right (fun (var, value) e -> Let (monadic, mk_typed_lvalue_from_var var None, Value (value, None), e)) variables_values e | V.FunCall -> let call_info = V.FunCallId.Map.find abs.call_id ctx.calls in let call = call_info.forward in let type_params = List.map (ctx_translate_fwd_ty ctx) call.type_params in (* Retrive the orignal call and the parent abstractions *) let forward, backwards = get_abs_ancestors ctx abs in (* Retrieve the values consumed when we called the forward function and * ended the parent backward functions: those give us part of the input * values *) let fwd_inputs = List.map (typed_value_to_rvalue ctx) forward.args in let back_ancestors_inputs = List.concat (List.map (abs_to_consumed ctx) backwards) in (* Retrieve the values consumed upon ending the loans inside this * abstraction: those give us the remaining input values *) let back_inputs = abs_to_consumed ctx abs in let inputs = List.concat [ fwd_inputs; back_ancestors_inputs; back_inputs ] in (* Retrieve the values given back by this function: those are the output * values. We rely on the fact that there are no nested borrows to use the * meta-place information from the input values given to the forward function * (we need to add `None` for the return avalue) *) let output_mpl = List.append (List.map translate_opt_mplace call.args_places) [ None ] in let ctx, outputs = abs_to_given_back output_mpl abs ctx in let output = mk_tuple_lvalue outputs in (* Sanity check: the inputs and outputs have the proper number and the proper type *) let fun_id = match call.call_id with | S.Fun (fun_id, _) -> fun_id | Unop _ | Binop _ -> (* Those don't have backward functions *) failwith "Unreachable" in let inst_sg = get_instantiated_fun_sig fun_id (Some abs.back_id) type_params ctx in List.iter (fun (x, ty) -> assert ((x : typed_rvalue).ty = ty)) (List.combine inputs inst_sg.inputs); log#ldebug (lazy ("\n- outputs: " ^ string_of_int (List.length outputs) ^ "\n- expected outputs: " ^ string_of_int (List.length inst_sg.outputs))); List.iter (fun (x, ty) -> assert ((x : typed_lvalue).ty = ty)) (List.combine outputs inst_sg.outputs); (* Retrieve the function id, and register the function call in the context * if necessary *) let ctx, func = bs_ctx_register_backward_call abs ctx in (* Translate the next expression *) let e = translate_expression e ctx in (* Put everything together *) let args_mplaces = List.map (fun _ -> None) inputs in let args = List.map (fun (arg, mp) -> Value (arg, mp)) (List.combine inputs args_mplaces) in let call = { func; type_params; args } in let monadic = true in Let (monadic, output, Call call, e) | V.SynthRet -> (* If we end the abstraction which consumed the return value of the function * we are synthesizing, we get back the borrows which were inside. Those borrows * are actually input arguments of the backward function we are synthesizing. * So we simply need to introduce proper let bindings. * * For instance: * ``` * fn id<'a>(x : &'a mut u32) -> &'a mut u32 { * x * } * ``` * * Upon ending the return abstraction for 'a, we get back the borrow for `x`. * This new value is the second argument of the backward function: * ``` * let id_back x nx = nx * ``` * * In practice, upon ending this abstraction we introduce a useless * let-binding: * ``` * let id_back x nx = * let s = nx in // the name `s` is not important (only collision matters) * ... * ``` * * This let-binding later gets inlined, during a micro-pass. * * *) (* First, retrieve the list of variables used for the inputs for the * backward function *) let inputs = T.RegionGroupId.Map.find abs.back_id ctx.backward_inputs in (* Retrieve the values consumed upon ending the loans inside this * abstraction: as there are no nested borrows, there should be none. *) let consumed = abs_to_consumed ctx abs in assert (consumed = []); (* Retrieve the values given back upon ending this abstraction - note that * we don't provide meta-place information, because those assignments will * be inlined anyway... *) let ctx, given_back = abs_to_given_back_no_mp abs ctx in (* Link the inputs to those given back values - note that this also * checks we have the same number of values, of course *) let given_back_inputs = List.combine given_back inputs in (* Sanity check *) List.iter (fun ((given_back, input) : typed_lvalue * var) -> assert (given_back.ty = input.ty)) given_back_inputs; (* Translate the next expression *) let e = translate_expression e ctx in (* Generate the assignments *) let monadic = false in List.fold_right (fun (given_back, input_var) e -> Let ( monadic, given_back, Value (mk_typed_rvalue_from_var input_var, None), e )) given_back_inputs e and translate_expansion (p : S.mplace option) (sv : V.symbolic_value) (exp : S.expansion) (ctx : bs_ctx) : expression = (* Translate the scrutinee *) let scrutinee_var = lookup_var_for_symbolic_value sv ctx in let scrutinee = mk_typed_rvalue_from_var scrutinee_var in let scrutinee_mplace = translate_opt_mplace p in (* Translate the branches *) match exp with | ExpandNoBranch (sexp, e) -> ( match sexp with | V.SeConcrete _ -> (* Actually, we don't *register* symbolic expansions to constant * values in the symbolic ADT *) failwith "Unreachable" | SeMutRef (_, nsv) | SeSharedRef (_, nsv) -> (* The (mut/shared) borrow type is extracted to identity: we thus simply * introduce an reassignment *) let ctx, var = fresh_var_for_symbolic_value nsv ctx in let e = translate_expression e ctx in let monadic = false in Let ( monadic, mk_typed_lvalue_from_var var None, Value (scrutinee, scrutinee_mplace), e ) | SeAdt _ -> (* Should be in the [ExpandAdt] case *) failwith "Unreachable") | ExpandAdt branches -> ( (* We don't do the same thing if there is a branching or not *) match branches with | [] -> failwith "Unreachable" | [ (variant_id, svl, branch) ] -> ( let type_id, _, _ = TypesUtils.ty_as_adt sv.V.sv_ty in let ctx, vars = fresh_vars_for_symbolic_values svl ctx in let branch = translate_expression branch ctx in match type_id with | T.AdtId adt_id -> (* Detect if this is an enumeration or not *) let tdef = bs_ctx_lookup_cfim_type_def adt_id ctx in let is_enum = type_def_is_enum tdef in if is_enum then (* This is an enumeration: introduce an [ExpandEnum] let-binding *) let variant_id = Option.get variant_id in let lvars = List.map (fun v -> mk_typed_lvalue_from_var v None) vars in let lv = mk_adt_lvalue scrutinee.ty variant_id lvars in let monadic = false in Let (monadic, lv, Value (scrutinee, scrutinee_mplace), branch) else (* This is not an enumeration: introduce let-bindings for every * field. * We use the [dest] variable in order not to have to recompute * the type of the result of the projection... *) let gen_field_proj (field_id : FieldId.id) (dest : var) : typed_rvalue = let pkind = E.ProjAdt (adt_id, None) in let pe : projection_elem = { pkind; field_id } in let projection = [ pe ] in let place = { var = scrutinee_var.id; projection } in let value = RvPlace place in let ty = dest.ty in { value; ty } in let id_var_pairs = FieldId.mapi (fun fid v -> (fid, v)) vars in let monadic = false in List.fold_right (fun (fid, var) e -> let field_proj = gen_field_proj fid var in Let ( monadic, mk_typed_lvalue_from_var var None, Value (field_proj, None), e )) id_var_pairs branch | T.Tuple -> let vars = List.map (fun x -> mk_typed_lvalue_from_var x None) vars in let monadic = false in Let ( monadic, mk_tuple_lvalue vars, Value (scrutinee, scrutinee_mplace), branch ) | T.Assumed T.Box -> (* There should be exactly one variable *) let var = match vars with [ v ] -> v | _ -> failwith "Unreachable" in (* We simply introduce an assignment - the box type is the * identity when extracted (`box a == a`) *) let monadic = false in Let ( monadic, mk_typed_lvalue_from_var var None, Value (scrutinee, scrutinee_mplace), branch )) | branches -> let translate_branch (variant_id : T.VariantId.id option) (svl : V.symbolic_value list) (branch : S.expression) : match_branch = (* There *must* be a variant id - otherwise there can't be several branches *) let variant_id = Option.get variant_id in let ctx, vars = fresh_vars_for_symbolic_values svl ctx in let vars = List.map (fun x -> mk_typed_lvalue_from_var x None) vars in let pat_ty = scrutinee.ty in let pat = mk_adt_lvalue pat_ty variant_id vars in let branch = translate_expression branch ctx in { pat; branch } in let branches = List.map (fun (vid, svl, e) -> translate_branch vid svl e) branches in Switch (scrutinee, scrutinee_mplace, Match branches)) | ExpandBool (true_e, false_e) -> (* We don't need to update the context: we don't introduce any * new values/variables *) let true_e = translate_expression true_e ctx in let false_e = translate_expression false_e ctx in Switch (scrutinee, scrutinee_mplace, If (true_e, false_e)) | ExpandInt (int_ty, branches, otherwise) -> let translate_branch ((v, branch_e) : V.scalar_value * S.expression) : scalar_value * expression = (* We don't need to update the context: we don't introduce any * new values/variables *) let branch_e = translate_expression branch_e ctx in (v, branch_e) in let branches = List.map translate_branch branches in let otherwise = translate_expression otherwise ctx in Switch (scrutinee, scrutinee_mplace, SwitchInt (int_ty, branches, otherwise)) and translate_meta (meta : S.meta) (e : S.expression) (ctx : bs_ctx) : expression = let e = translate_expression e ctx in let meta = match meta with | S.Assignment (p, rv) -> let p = translate_mplace p in let rv = typed_value_to_rvalue ctx rv in Assignment (p, rv) in Meta (meta, e) let translate_fun_def (ctx : bs_ctx) (body : S.expression) : fun_def = let def = ctx.fun_def in let bid = ctx.bid in log#ldebug (lazy ("SymbolicToPure.translate_fun_def: " ^ Print.name_to_string def.A.name ^ " (" ^ Print.option_to_string T.RegionGroupId.to_string bid ^ ")")); (* Translate the function *) let def_id = def.A.def_id in let basename = def.name in let signature = bs_ctx_lookup_local_function_sig def_id bid ctx in let body = translate_expression body ctx in (* Compute the list of (properly ordered) input variables *) let backward_inputs : var list = match bid with | None -> [] | Some back_id -> let parents_ids = list_ordered_parent_region_groups def.signature back_id in let backward_ids = List.append parents_ids [ back_id ] in List.concat (List.map (fun id -> T.RegionGroupId.Map.find id ctx.backward_inputs) backward_ids) in let inputs = List.append ctx.forward_inputs backward_inputs in let inputs_lvs = List.map (fun v -> mk_typed_lvalue_from_var v None) inputs in (* Sanity check *) assert ( List.for_all (fun (var, ty) -> (var : var).ty = ty) (List.combine inputs signature.inputs)); let def = { def_id; back_id = bid; basename; signature; inputs; inputs_lvs; body } in (* Debugging *) log#ldebug (lazy ("SymbolicToPure.translate_fun_def: translated:\n" ^ fun_def_to_string ctx def)); (* return *) def let translate_type_defs (type_defs : T.type_def list) : type_def list = List.map translate_type_def type_defs (** Translates function signatures. Takes as input a list of function information containing: - the function id - a list of optional names for the inputs - the function signature Returns a map from forward/backward functions identifiers to: - translated function signatures - optional names for the outputs values (we derive them for the backward functions) *) let translate_fun_signatures (types_infos : TA.type_infos) (functions : (A.fun_id * string option list * A.fun_sig) list) : fun_sig_named_outputs RegularFunIdMap.t = (* For every function, translate the signatures of: - the forward function - the backward functions *) let translate_one (fun_id : A.fun_id) (input_names : string option list) (sg : A.fun_sig) : (regular_fun_id * fun_sig_named_outputs) list = (* The forward function *) let fwd_sg = translate_fun_sig types_infos sg input_names None in let fwd_id = (fun_id, None) in (* The backward functions *) let back_sgs = List.map (fun (rg : T.region_var_group) -> let tsg = translate_fun_sig types_infos sg input_names (Some rg.id) in let id = (fun_id, Some rg.id) in (id, tsg)) sg.regions_hierarchy in (* Return *) (fwd_id, fwd_sg) :: back_sgs in let translated = List.concat (List.map (fun (id, names, sg) -> translate_one id names sg) functions) in List.fold_left (fun m (id, sg) -> RegularFunIdMap.add id sg m) RegularFunIdMap.empty translated