open Errors module Id = Identifiers module T = Types module V = Values module E = Expressions module A = CfimAst module M = Modules module S = SymbolicAst module TA = TypesAnalysis open Pure (** TODO: move this, it is not useful for symbolic -> pure *) type name = | FunName of A.FunDefId.id * T.RegionVarId.id option | TypeName of T.TypeDefId.id [@@deriving show, ord] let name_to_string (n : name) : string = show_name n module NameOrderedType = struct type t = name let compare = compare_name let to_string = name_to_string let pp_t = pp_name let show_t = show_name end module NameMap = Collections.MakeMapInj (NameOrderedType) (Id.NameOrderedType) (** Notice that we use the *injective* map to map identifiers to names. Of course, even if those names (which are string lists) don't collide, when converting them to strings we can still introduce collisions: we check that later. Note that we use injective maps for sanity: though we write the name generation with collision in mind, it is always good to have such checks. *) let translate_fun_name (fdef : A.fun_def) (bid : T.RegionGroupId.id option) : Id.name = let sg = fdef.signature in (* General function to generate a suffix for a region group * (i.e., an abstraction)*) let rg_to_string (rg : T.region_var_group) : string = (* We are just a little bit smart: - if there is exactly one region id in the region group and this region has a name, we use this name - otherwise, we use the region number (note that region names shouldn't start with numbers) *) match rg.T.regions with | [ rid ] -> ( let rvar = T.RegionVarId.nth sg.region_params rid in match rvar.name with | None -> T.RegionGroupId.to_string rg.T.id | Some name -> name) | _ -> T.RegionGroupId.to_string rg.T.id in (* There are several cases: - this is a forward function: we add "_fwd" - this is a backward function: - this function has one backward function: we add "_back" - this function has several backward function: we add "_back" and an additional suffix to identify the precise backward function *) let suffix = match bid with | None -> "_fwd" | Some bid -> ( match sg.regions_hierarchy with | [] -> failwith "Unreachable" (* we can't get there if we ask for a back function *) | [ _ ] -> (* Exactly one backward function *) "_back" | _ -> (* Several backward functions - note that **we use the backward function id * as if it were a region group id** (there is a direct mapping between the * two - TODO: merge them) *) let rg = T.RegionGroupId.nth sg.regions_hierarchy bid in "_back" ^ rg_to_string rg) in (* Final name *) let rec add_to_last (n : Id.name) : Id.name = match n with | [] -> failwith "Unreachable" | [ x ] -> [ x ^ suffix ] | x :: n -> x :: add_to_last n in add_to_last fdef.name (** Generates a name for a type (simply reuses the name in the definition) *) let translate_type_name (def : T.type_def) : Id.name = def.T.name (* TODO: move *) let mk_place_from_var (v : var) : place = { var = v.id; projection = [] } let mk_typed_rvalue_from_var (v : var) : typed_rvalue = let value = RvPlace (mk_place_from_var v) in let ty = v.ty in { value; ty } (* TODO: move *) let type_def_is_enum (def : T.type_def) : bool = match def.kind with T.Struct _ -> false | Enum _ -> true (* TODO: move *) let mk_typed_lvalue_from_var (v : var) : typed_lvalue = let value = LvVar (Var v) in let ty = v.ty in { value; ty } type type_context = { types_infos : TA.type_infos; cfim_type_defs : T.type_def TypeDefId.Map.t; type_defs : type_def TypeDefId.Map.t; } type fun_context = { cfim_fun_defs : A.fun_def FunDefId.Map.t; fun_defs : fun_def FunDefId.Map.t; } (* TODO: do we really need that actually? *) type synth_ctx = { names : NameMap.t; (* TODO: remove? *) type_context : type_context; fun_context : fun_context; declarations : M.declaration_group list; } type call_info = { forward : S.call; backwards : V.abs T.RegionGroupId.Map.t; (** TODO: not sure we need this anymore *) } (** Whenever we translate a function call or an ended abstraction, we store the related information (this is useful when translating ended children abstractions) *) type bs_ctx = { type_context : type_context; fun_context : fun_context; fun_def : A.fun_def; bid : T.RegionGroupId.id option; forward_inputs : var list; (** The input parameters for the forward function *) backward_inputs : var list T.RegionGroupId.Map.t; (** The input parameters for the backward functions *) calls : call_info V.FunCallId.Map.t; (** The function calls we encountered so far *) abstractions : V.abs V.AbstractionId.Map.t; (** The ended abstractions we encountered so far *) } (** Body synthesis context *) type fs_ctx = { fun_def : A.fun_def; bid : T.RegionGroupId.id option; type_context : type_context; fun_context : fun_context; forward_inputs : var list; (** The input parameters for the forward function *) backward_inputs : var list T.RegionGroupId.Map.t; (** The input parameters for the backward functions *) } (** Function synthesis context TODO: merge with bs_ctx? *) let fs_ctx_to_bs_ctx (fs_ctx : fs_ctx) : bs_ctx = let { fun_def; bid; type_context; fun_context; forward_inputs; backward_inputs; } = fs_ctx in let calls = V.FunCallId.Map.empty in let abstractions = V.AbstractionId.Map.empty in { fun_def; bid; type_context; fun_context; forward_inputs; backward_inputs; calls; abstractions; } (*let bs_ctx_lookup_type_def (id : TypeDefId.id) (ctx : bs_ctx) : type_def = TypeDefId.Map.find id ctx.type_context.type_defs*) let bs_ctx_lookup_cfim_type_def (id : TypeDefId.id) (ctx : bs_ctx) : T.type_def = TypeDefId.Map.find id ctx.type_context.cfim_type_defs let bs_ctx_lookup_cfim_fun_def (id : FunDefId.id) (ctx : bs_ctx) : A.fun_def = FunDefId.Map.find id ctx.fun_context.cfim_fun_defs let bs_ctx_register_forward_call (call_id : V.FunCallId.id) (forward : S.call) (ctx : bs_ctx) : bs_ctx = let calls = ctx.calls in assert (not (V.FunCallId.Map.mem call_id calls)); let info = { forward; backwards = T.RegionGroupId.Map.empty } in let calls = V.FunCallId.Map.add call_id info calls in { ctx with calls } let bs_ctx_register_backward_call (abs : V.abs) (ctx : bs_ctx) : bs_ctx * fun_id = (* Insert the abstraction in the call informations *) let back_id = abs.back_id in let info = V.FunCallId.Map.find abs.call_id ctx.calls in assert (not (T.RegionGroupId.Map.mem back_id info.backwards)); let backwards = T.RegionGroupId.Map.add back_id abs info.backwards in let info = { info with backwards } in let calls = V.FunCallId.Map.add abs.call_id info ctx.calls in (* Insert the abstraction in the abstractions map *) let abstractions = ctx.abstractions in assert (not (V.AbstractionId.Map.mem abs.abs_id abstractions)); let abstractions = V.AbstractionId.Map.add abs.abs_id abs abstractions in (* Retrieve the fun_id *) let fun_id = match info.forward.call_id with | S.Fun (fid, _) -> Regular (fid, Some abs.back_id) | S.Unop _ | S.Binop _ -> failwith "Unreachable" in (* Update the context and return *) ({ ctx with calls; abstractions }, fun_id) let rec translate_sty (ty : T.sty) : ty = let translate = translate_sty in match ty with | T.Adt (type_id, regions, tys) -> (* Can't translate types with regions for now *) assert (regions = []); let tys = List.map translate tys in Adt (type_id, tys) | TypeVar vid -> TypeVar vid | Bool -> Bool | Char -> Char | Never -> failwith "Unreachable" | Integer int_ty -> Integer int_ty | Str -> Str | Array ty -> Array (translate ty) | Slice ty -> Slice (translate ty) | Ref (_, rty, _) -> translate rty let translate_field (f : T.field) : field = let field_name = f.field_name in let field_ty = translate_sty f.field_ty in { field_name; field_ty } let translate_fields (fl : T.field list) : field list = List.map translate_field fl let translate_variant (v : T.variant) : variant = let variant_name = v.variant_name in let fields = translate_fields v.fields in { variant_name; fields } let translate_variants (vl : T.variant list) : variant list = List.map translate_variant vl (** Translate a type def kind to IM *) let translate_type_def_kind (kind : T.type_def_kind) : type_def_kind = match kind with | T.Struct fields -> Struct (translate_fields fields) | T.Enum variants -> Enum (translate_variants variants) (** Translate a type definition from IM TODO: this is not symbolic to pure but IM to pure. Still, I don't see the point of moving this definition for now. *) let translate_type_def (def : T.type_def) : type_def = (* Translate *) let def_id = def.T.def_id in let name = translate_type_name def in (* Can't translate types with regions for now *) assert (def.region_params = []); let type_params = def.type_params in let kind = translate_type_def_kind def.T.kind in { def_id; name; type_params; kind } (** Translate a type, seen as an input/output of a forward function (preserve all borrows, etc.) *) let rec translate_fwd_ty (ctx : bs_ctx) (ty : 'r T.ty) : ty = let translate = translate_fwd_ty ctx in let types_infos = ctx.type_context.types_infos in match ty with | T.Adt (type_id, regions, tys) -> (* Can't translate types with regions for now *) assert (regions = []); (* No general parametricity for now *) assert (not (List.exists (TypesUtils.ty_has_borrows types_infos) tys)); (* Translate the type parameters *) let tys = List.map translate tys in Adt (type_id, tys) | TypeVar vid -> TypeVar vid | Bool -> Bool | Char -> Char | Never -> failwith "Unreachable" | Integer int_ty -> Integer int_ty | Str -> Str | Array ty -> assert (not (TypesUtils.ty_has_borrows types_infos ty)); Array (translate ty) | Slice ty -> assert (not (TypesUtils.ty_has_borrows types_infos ty)); Slice (translate ty) | Ref (_, rty, _) -> translate rty (** Translate a type, when some regions may have ended. We return an option, because the translated type may be empty. [inside_mut]: are we inside a mutable borrow? *) let rec translate_back_ty (ctx : bs_ctx) (keep_region : 'r -> bool) (inside_mut : bool) (ty : 'r T.ty) : ty option = let translate = translate_back_ty ctx keep_region inside_mut in let types_infos = ctx.type_context.types_infos in (* A small helper for "leave" types *) let wrap ty = if inside_mut then Some ty else None in match ty with | T.Adt (type_id, regions, tys) -> ( match type_id with | T.AdtId _ | Assumed _ -> (* Don't accept ADTs (which are not tuples) with borrows for now *) assert (not (TypesUtils.ty_has_borrows types_infos ty)); None | T.Tuple -> ( (* Tuples can contain borrows (which we eliminated) *) let tys_t = List.filter_map translate tys in match tys_t with [] -> None | _ -> Some (Adt (T.Tuple, tys_t)))) | TypeVar vid -> wrap (TypeVar vid) | Bool -> wrap Bool | Char -> wrap Char | Never -> failwith "Unreachable" | Integer int_ty -> wrap (Integer int_ty) | Str -> wrap Str | Array ty -> ( assert (not (TypesUtils.ty_has_borrows types_infos ty)); match translate ty with None -> None | Some ty -> Some (Array ty)) | Slice ty -> ( assert (not (TypesUtils.ty_has_borrows types_infos ty)); match translate ty with None -> None | Some ty -> Some (Slice ty)) | Ref (r, rty, rkind) -> ( match rkind with | T.Shared -> (* Ignore shared references, unless we are below a mutable borrow *) if inside_mut then translate rty else None | T.Mut -> (* Dive in, remembering the fact that we are inside a mutable borrow *) let inside_mut = true in if keep_region r then translate_back_ty ctx keep_region inside_mut rty else None) (** Small utility: list the transitive parents of a region var group. We don't do that in an efficient manner, but it doesn't matter. TODO: remove? *) let rec list_parent_region_groups (def : A.fun_def) (gid : T.RegionGroupId.id) : T.RegionGroupId.Set.t = let rg = T.RegionGroupId.nth def.signature.regions_hierarchy gid in let parents = List.fold_left (fun s gid -> (* Compute the parents *) let parents = list_parent_region_groups def gid in (* Parents U current region *) let parents = T.RegionGroupId.Set.add gid parents in (* Make the union with the accumulator *) T.RegionGroupId.Set.union s parents) T.RegionGroupId.Set.empty rg.parents in parents (** Small utility: same as [list_parent_region_groups], but returns an ordered list. TODO: remove? *) let list_ordered_parent_region_groups (def : A.fun_def) (gid : T.RegionGroupId.id) : T.RegionGroupId.id list = let pset = list_parent_region_groups def gid in let parents = List.filter (fun (rg : T.region_var_group) -> T.RegionGroupId.Set.mem rg.id pset) def.signature.regions_hierarchy in let parents = List.map (fun (rg : T.region_var_group) -> rg.id) parents in parents let list_ancestor_abstractions_ids (ctx : bs_ctx) (abs : V.abs) : V.AbstractionId.id list = (* We could do something more "elegant" without references, but it is * so much simpler to use references... *) let abs_set = ref V.AbstractionId.Set.empty in let rec gather (abs_id : V.AbstractionId.id) : unit = if V.AbstractionId.Set.mem abs_id !abs_set then () else ( abs_set := V.AbstractionId.Set.add abs_id !abs_set; let abs = V.AbstractionId.Map.find abs_id ctx.abstractions in List.iter gather abs.original_parents) in gather abs.abs_id; let ids = !abs_set in (* List the ancestors, in the proper order *) let call_info = V.FunCallId.Map.find abs.call_id ctx.calls in List.filter (fun id -> V.AbstractionId.Set.mem id ids) call_info.forward.abstractions let list_ancestor_abstractions (ctx : bs_ctx) (abs : V.abs) : V.abs list = let abs_ids = list_ancestor_abstractions_ids ctx abs in List.map (fun id -> V.AbstractionId.Map.find id ctx.abstractions) abs_ids let translate_fun_sig (ctx : bs_ctx) (def : A.fun_def) (bid : T.RegionGroupId.id option) : fun_sig = let sg = def.signature in (* Retrieve the list of parent backward functions *) let gid, parents = match bid with | None -> (None, T.RegionGroupId.Set.empty) | Some bid -> let parents = list_parent_region_groups def bid in (Some bid, parents) in (* List the inputs for: * - the forward function * - the parent backward functions, in proper order * - the current backward function (if it is a backward function) *) let fwd_inputs = List.map (translate_fwd_ty ctx) sg.inputs in (* For the backward functions: for now we don't supported nested borrows, * so just check that there aren't parent regions *) assert (T.RegionGroupId.Set.is_empty parents); (* Small helper to translate types for backward functions *) let translate_back_ty_for_gid (gid : T.RegionGroupId.id) : T.sty -> ty option = let rg = T.RegionGroupId.nth sg.regions_hierarchy gid in let regions = T.RegionVarId.Set.of_list rg.regions in let keep_region r = match r with | T.Static -> raise Unimplemented | T.Var r -> T.RegionVarId.Set.mem r regions in let inside_mut = false in translate_back_ty ctx keep_region inside_mut in (* Compute the additinal inputs for the current function, if it is a backward * function *) let back_inputs = match gid with | None -> [] | Some gid -> (* For now, we don't allow nested borrows, so the additional inputs to the * backward function can only come from borrows that were returned like * in (for the backward function we introduce for 'a): * ``` * fn f<'a>(...) -> &'a mut u32; * ``` * Upon ending the abstraction for 'a, we need to get back the borrow * the function returned. *) List.filter_map (translate_back_ty_for_gid gid) [ sg.output ] in let inputs = List.append fwd_inputs back_inputs in (* Outputs *) let outputs : ty list = match gid with | None -> (* This is a forward function: there is one output *) [ translate_fwd_ty ctx sg.output ] | Some gid -> (* This is a backward function: there might be several outputs. * The outputs are the borrows inside the regions of the abstractions * and which are present in the input values. For instance, see: * ``` * fn f<'a>(x : 'a mut u32) -> ...; * ``` * Upon ending the abstraction for 'a, we give back the borrow which * was consumed through the `x` parameter. *) List.filter_map (translate_back_ty_for_gid gid) sg.inputs in (* Type parameters *) let type_params = sg.type_params in (* Return *) { type_params; inputs; outputs } (** Translate a typed value. **IMPORTANT**: this function makes the assumption that the typed value doesn't contain ⊥. This means in particular that symbolic values don't contain ended regions. TODO: we might want to remember in the symbolic AST the set of ended regions, at the points where we need it, for sanity checks. The points where we need this set so far: - function call - end abstraction - return *) let translate_typed_value_to_rvalue (ctx : bs_ctx) (v : V.typed_value) : typed_rvalue = raise Unimplemented let fresh_var_for_symbolic_value (sv : V.symbolic_value) (ctx : bs_ctx) : bs_ctx * var = raise Unimplemented let fresh_vars_for_symbolic_values (svl : V.symbolic_value list) (ctx : bs_ctx) : bs_ctx * var list = List.fold_left_map (fun ctx sv -> fresh_var_for_symbolic_value sv ctx) ctx svl let get_var_for_symbolic_value (sv : V.symbolic_value) (ctx : bs_ctx) : var = raise Unimplemented let typed_avalue_to_consumed (ctx : bs_ctx) (av : V.typed_avalue) : typed_rvalue option = raise Unimplemented let abs_to_consumed (ctx : bs_ctx) (abs : V.abs) : typed_rvalue list = List.filter_map (typed_avalue_to_consumed ctx) abs.avalues let typed_avalue_to_given_back (av : V.typed_avalue) (ctx : bs_ctx) : bs_ctx * typed_lvalue option = raise Unimplemented let abs_to_given_back (abs : V.abs) (ctx : bs_ctx) : bs_ctx * typed_lvalue list = let ctx, values = List.fold_left_map (fun ctx av -> typed_avalue_to_given_back av ctx) ctx abs.avalues in let values = List.filter_map (fun x -> x) values in (ctx, values) (** Return the ordered list of the (transitive) parents of a given abstraction. Is used for instance when collecting the input values given to all the parent functions, in order to properly instantiate an *) let get_abs_ancestors (ctx : bs_ctx) (abs : V.abs) : S.call * V.abs list = let call_info = V.FunCallId.Map.find abs.call_id ctx.calls in let abs_ancestors = list_ancestor_abstractions ctx abs in (call_info.forward, abs_ancestors) let rec translate_expression (e : S.expression) (ctx : bs_ctx) : expression = match e with | S.Return v -> let v = translate_typed_value_to_rvalue ctx v in Return v | Panic -> Panic | FunCall (call, e) -> translate_function_call call e ctx | EndAbstraction (abs, e) -> translate_end_abstraction abs e ctx | Expansion (sv, exp) -> translate_expansion sv exp ctx | Meta (_, e) -> (* We ignore the meta information *) translate_expression e ctx and translate_function_call (call : S.call) (e : S.expression) (ctx : bs_ctx) : expression = (* Translate the function call *) let type_params = List.map (translate_fwd_ty ctx) call.type_params in let args = List.map (translate_typed_value_to_rvalue ctx) call.args in let ctx, dest = fresh_var_for_symbolic_value call.dest ctx in (* Retrieve the function id, and register the function call in the context * if necessary *) let ctx, func = match call.call_id with | S.Fun (fid, call_id) -> let ctx = bs_ctx_register_forward_call call_id call ctx in let func = Regular (fid, None) in (ctx, func) | S.Unop unop -> (ctx, Unop unop) | S.Binop binop -> (ctx, Binop binop) in let call = { func; type_params; args } in (* Translate the next expression *) let e = translate_expression e ctx in (* Put together *) Let (Call ([ mk_typed_lvalue_from_var dest ], call), e) and translate_end_abstraction (abs : V.abs) (e : S.expression) (ctx : bs_ctx) : expression = match abs.kind with | V.SynthInput -> (* There are no nested borrows for now: we shouldn't get there *) raise Unimplemented | V.FunCall -> let call_info = V.FunCallId.Map.find abs.call_id ctx.calls in let call = call_info.forward in let type_params = List.map (translate_fwd_ty ctx) call.type_params in (* Retrive the orignal call and the parent abstractions *) let forward, backwards = get_abs_ancestors ctx abs in (* Retrieve the values consumed when we called the forward function and * ended the parent backward functions: those give us part of the input * values *) let fwd_inputs = List.map (translate_typed_value_to_rvalue ctx) forward.args in let back_ancestors_inputs = List.concat (List.map (abs_to_consumed ctx) backwards) in (* Retrieve the values consumed upon ending the loans inside this * abstraction: those give us the remaining input values *) let back_inputs = abs_to_consumed ctx abs in let inputs = List.concat [ fwd_inputs; back_ancestors_inputs; back_inputs ] in (* Retrieve the values given back by this function: those are the output * values *) let ctx, outputs = abs_to_given_back abs ctx in (* Retrieve the function id, and register the function call in the context * if necessary *) let ctx, func = bs_ctx_register_backward_call abs ctx in (* Translate the next expression *) let e = translate_expression e ctx in (* Put everything together *) let call = { func; type_params; args = inputs } in Let (Call (outputs, call), e) | V.SynthRet -> (* If we end the abstraction which consumed the return value of the function * we are synthesizing, we get back the borrows which were inside. Those borrows * are actually input arguments of the backward function we are synthesizing. * So we simply need to introduce proper let bindings. * * For instance: * ``` * fn id<'a>(x : &'a mut u32) -> &'a mut u32 { * x * } * ``` * * Upon ending the return abstraction for 'a, we get back the borrow for `x`. * This new value is the second argument of the backward function: * ``` * let id_back x nx = nx * ``` * * In practice, upon ending this abstraction we introduce a useless * let-binding: * ``` * let id_back x nx = * let s = nx in // the name `s` is not important (only collision matters) * ... * ``` * * This let-binding later gets inlined, during a micro-pass. * * *) (* First, retrieve the list of variables used for the inputs for the * backward function *) let inputs = T.RegionGroupId.Map.find abs.back_id ctx.backward_inputs in raise Unimplemented and translate_expansion (sv : V.symbolic_value) (exp : S.expansion) (ctx : bs_ctx) : expression = (* Translate the scrutinee *) let scrutinee_var = get_var_for_symbolic_value sv ctx in let scrutinee = mk_typed_rvalue_from_var scrutinee_var in (* Translate the branches *) match exp with | ExpandNoBranch (sexp, e) -> ( match sexp with | V.SeConcrete _ -> (* Actually, we don't *register* symbolic expansions to constant * values in the symbolic ADT *) failwith "Unreachable" | SeMutRef (_, sv) | SeSharedRef (_, sv) -> (* The (mut/shared) borrow type is extracted to identity: we thus simply * introduce an reassignment *) let ctx, var = fresh_var_for_symbolic_value sv ctx in let e = translate_expression e ctx in Let (Assignment (var, scrutinee), e) | SeAdt _ -> (* Should be in the [ExpandAdt] case *) failwith "Unreachable") | ExpandAdt branches -> ( (* We don't do the same thing if there is a branching or not *) match branches with | [] -> failwith "Unreachable" | [ (variant_id, svl, branch) ] -> ( let type_id, _, _ = TypesUtils.ty_as_adt sv.V.sv_ty in let ctx, vars = fresh_vars_for_symbolic_values svl ctx in let branch = translate_expression branch ctx in match type_id with | T.AdtId adt_id -> (* Detect if this is an enumeration or not *) let tdef = bs_ctx_lookup_cfim_type_def adt_id ctx in let is_enum = type_def_is_enum tdef in if is_enum then (* This is an enumeration: introduce an [ExpandEnum] let-binding *) let variant_id = Option.get variant_id in let vars = List.map (fun x -> Var x) vars in Let ( Deconstruct (vars, Some (adt_id, variant_id), scrutinee), branch ) else (* This is not an enumeration: introduce let-bindings for every * field. * We use the [dest] variable in order not to have to recompute * the type of the result of the projection... *) let gen_field_proj (field_id : FieldId.id) (dest : var) : typed_rvalue = let pkind = E.ProjAdt (adt_id, None) in let pe : projection_elem = { pkind; field_id } in let projection = [ pe ] in let place = { var = scrutinee_var.id; projection } in let value = RvPlace place in let ty = dest.ty in { value; ty } in let id_var_pairs = FieldId.mapi (fun fid v -> (fid, v)) vars in List.fold_right (fun (fid, var) e -> let field_proj = gen_field_proj fid var in Let (Assignment (var, field_proj), e)) id_var_pairs branch | T.Tuple -> let vars = List.map (fun x -> Var x) vars in Let (Deconstruct (vars, None, scrutinee), branch) | T.Assumed T.Box -> (* There should be exactly one variable *) let var = match vars with [ v ] -> v | _ -> failwith "Unreachable" in (* We simply introduce an assignment - the box type is the * identity when extracted (`box a == a`) *) Let (Assignment (var, scrutinee), branch)) | branches -> let translate_branch (variant_id : T.VariantId.id option) (svl : V.symbolic_value list) (branch : S.expression) : match_branch = (* There *must* be a variant id - otherwise there can't be several branches *) let variant_id = Option.get variant_id in let ctx, vars = fresh_vars_for_symbolic_values svl ctx in let vars = List.map (fun x -> Var x) vars in let branch = translate_expression branch ctx in { variant_id; vars; branch } in let branches = List.map (fun (vid, svl, e) -> translate_branch vid svl e) branches in Switch (scrutinee, Match branches)) | ExpandBool (true_e, false_e) -> (* We don't need to update the context: we don't introduce any * new values/variables *) let true_e = translate_expression true_e ctx in let false_e = translate_expression false_e ctx in Switch (scrutinee, If (true_e, false_e)) | ExpandInt (int_ty, branches, otherwise) -> let translate_branch ((v, branch_e) : V.scalar_value * S.expression) : scalar_value * expression = (* We don't need to update the context: we don't introduce any * new values/variables *) let branch_e = translate_expression branch_e ctx in (v, branch_e) in let branches = List.map translate_branch branches in let otherwise = translate_expression otherwise ctx in Switch (scrutinee, SwitchInt (int_ty, branches, otherwise)) let translate_fun_def (fs_ctx : fs_ctx) (body : S.expression) : fun_def = let def = fs_ctx.fun_def in let bid = fs_ctx.bid in let bs_ctx = fs_ctx_to_bs_ctx fs_ctx in (* Translate the function *) let def_id = def.A.def_id in let name = translate_fun_name def bid in let signature = translate_fun_sig bs_ctx def bid in let body = translate_expression body bs_ctx in { def_id; name; signature; body }