(** This file implements various substitution utilities to instantiate types, function bodies, etc. *) module T = Types module V = Values module E = Expressions module A = CfimAst module C = Contexts (** Substitute types variables and regions in a type *) let rec ty_substitute (rsubst : 'r1 -> 'r2) (tsubst : T.TypeVarId.id -> 'r2 T.ty) (ty : 'r1 T.ty) : 'r2 T.ty = let open T in let subst = ty_substitute rsubst tsubst in (* helper *) match ty with | Adt (def_id, regions, tys) -> Adt (def_id, List.map rsubst regions, List.map subst tys) | Tuple tys -> Tuple (List.map subst tys) | Array aty -> Array (subst aty) | Slice sty -> Slice (subst sty) | Ref (r, ref_ty, ref_kind) -> Ref (rsubst r, subst ref_ty, ref_kind) | Assumed (aty, regions, tys) -> Assumed (aty, List.map rsubst regions, List.map subst tys) (* Below variants: we technically return the same value, but because one has type ['r1 ty] and the other has type ['r2 ty] we need to deconstruct then reconstruct *) | Bool -> Bool | Char -> Char | Never -> Never | Integer int_ty -> Integer int_ty | Str -> Str | TypeVar vid -> tsubst vid (** Erase the regions in a type and substitute the type variables *) let erase_regions_substitute_types (tsubst : T.TypeVarId.id -> T.ety) (ty : T.rty) : T.ety = let rsubst (r : T.RegionVarId.id T.region) : T.erased_region = T.Erased in ty_substitute rsubst tsubst ty (** Create a type substitution from a list of type variable ids and a list of types (with which to substitute the type variable ids *) let make_type_subst (var_ids : T.TypeVarId.id list) (tys : 'r T.ty list) : T.TypeVarId.id -> 'r T.ty = let ls = List.combine var_ids tys in let mp = List.fold_left (fun mp (k, v) -> T.TypeVarId.Map.add k v mp) T.TypeVarId.Map.empty ls in fun id -> T.TypeVarId.Map.find id mp (** Retrieve the list of fields for the given variant of a [type_def]. Raises [Invalid_argument] if the arguments are incorrect. TODO: move *) let type_def_get_fields (def : T.type_def) (opt_variant_id : T.VariantId.id option) : T.field T.FieldId.vector = match (def.kind, opt_variant_id) with | Enum variants, Some variant_id -> (T.VariantId.nth variants variant_id).fields | Struct fields, None -> fields | _ -> raise (Invalid_argument "The variant id should be [Some] if and only if the definition is \ an enumeration") (** Instantiate the type variables in an ADT definition, and return the list of types of the fields for the chosen variant *) let type_def_get_instantiated_field_type (def : T.type_def) (opt_variant_id : T.VariantId.id option) (types : T.ety list) : T.ety T.FieldId.vector = let ty_subst = make_type_subst (List.map (fun x -> x.T.tv_index) (T.TypeVarId.vector_to_list def.T.type_params)) types in let fields = type_def_get_fields def opt_variant_id in T.FieldId.map (fun f -> erase_regions_substitute_types ty_subst f.T.field_ty) fields (** Return the types of the properly instantiated ADT's variant, provided a context *) let ctx_adt_get_instantiated_field_types (ctx : C.eval_ctx) (def_id : T.TypeDefId.id) (opt_variant_id : T.VariantId.id option) (types : T.ety list) : T.ety T.FieldId.vector = let def = C.ctx_lookup_type_def ctx def_id in type_def_get_instantiated_field_type def opt_variant_id types (** Apply a type substitution to a place *) let place_substitute (_tsubst : T.TypeVarId.id -> T.ety) (p : E.place) : E.place = (* There is nothing to do *) p (** Apply a type substitution to an operand constant value *) let operand_constant_value_substitute (_tsubst : T.TypeVarId.id -> T.ety) (op : E.operand_constant_value) : E.operand_constant_value = (* There is nothing to do *) op (** Apply a type substitution to an operand *) let operand_substitute (tsubst : T.TypeVarId.id -> T.ety) (op : E.operand) : E.operand = let p_subst = place_substitute tsubst in match op with | E.Copy p -> E.Copy (p_subst p) | E.Move p -> E.Move (p_subst p) | E.Constant (ety, cv) -> let rsubst x = x in E.Constant ( ty_substitute rsubst tsubst ety, operand_constant_value_substitute tsubst cv ) (** Apply a type substitution to an rvalue *) let rvalue_substitute (tsubst : T.TypeVarId.id -> T.ety) (rv : E.rvalue) : E.rvalue = let op_subst = operand_substitute tsubst in let p_subst = place_substitute tsubst in match rv with | E.Use op -> E.Use (op_subst op) | E.Ref (p, bkind) -> E.Ref (p_subst p, bkind) | E.UnaryOp (unop, op) -> E.UnaryOp (unop, op_subst op) | E.BinaryOp (binop, op1, op2) -> E.BinaryOp (binop, op_subst op1, op_subst op2) | E.Discriminant p -> E.Discriminant (p_subst p) | E.Aggregate (kind, ops) -> let ops = List.map op_subst ops in let kind = match kind with | E.AggregatedTuple -> E.AggregatedTuple | E.AggregatedAdt (def_id, variant_id, regions, tys) -> let rsubst x = x in E.AggregatedAdt ( def_id, variant_id, regions, List.map (ty_substitute rsubst tsubst) tys ) in E.Aggregate (kind, ops) (** Apply a type substitution to an assertion *) let assertion_substitute (tsubst : T.TypeVarId.id -> T.ety) (a : A.assertion) : A.assertion = { A.cond = operand_substitute tsubst a.A.cond; A.expected = a.A.expected } (** Apply a type substitution to a call *) let call_substitute (tsubst : T.TypeVarId.id -> T.ety) (call : A.call) : A.call = let rsubst x = x in let type_params = List.map (ty_substitute rsubst tsubst) call.A.type_params in let args = List.map (operand_substitute tsubst) call.A.args in let dest = place_substitute tsubst call.A.dest in (* Putting all the paramters on purpose: we want to get a compiler error if something moves - we may add a field on which we need to apply a substitution *) { func = call.A.func; region_params = call.A.region_params; A.type_params; args; dest; } (** Apply a type substitution to a statement *) let statement_substitute (tsubst : T.TypeVarId.id -> T.ety) (st : A.statement) : A.statement = match st with | A.Assign (p, rvalue) -> let p = place_substitute tsubst p in let rvalue = rvalue_substitute tsubst rvalue in A.Assign (p, rvalue) | A.FakeRead p -> let p = place_substitute tsubst p in A.FakeRead p | A.SetDiscriminant (p, vid) -> let p = place_substitute tsubst p in A.SetDiscriminant (p, vid) | A.Drop p -> let p = place_substitute tsubst p in A.Drop p | A.Assert assertion -> let assertion = assertion_substitute tsubst assertion in A.Assert assertion | A.Call call -> let call = call_substitute tsubst call in A.Call call | A.Panic | A.Return | A.Break _ | A.Continue _ | A.Nop -> st (** Apply a type substitution to an expression *) let rec expression_substitute (tsubst : T.TypeVarId.id -> T.ety) (e : A.expression) : A.expression = match e with | A.Statement st -> A.Statement (statement_substitute tsubst st) | A.Sequence (e1, e2) -> A.Sequence (expression_substitute tsubst e1, expression_substitute tsubst e2) | A.Switch (op, tgts) -> A.Switch (operand_substitute tsubst op, switch_targets_substitute tsubst tgts) | A.Loop le -> A.Loop (expression_substitute tsubst le) (** Apply a type substitution to switch targets *) and switch_targets_substitute (tsubst : T.TypeVarId.id -> T.ety) (tgts : A.switch_targets) : A.switch_targets = match tgts with | A.If (e1, e2) -> A.If (expression_substitute tsubst e1, expression_substitute tsubst e2) | A.SwitchInt (int_ty, tgts, otherwise) -> let tgts = List.map (fun (sv, e) -> (sv, expression_substitute tsubst e)) tgts in let otherwise = expression_substitute tsubst otherwise in A.SwitchInt (int_ty, tgts, otherwise) (** Apply a type substitution to a function body. Return the local variables and the body. *) let fun_def_substitute_in_body (tsubst : T.TypeVarId.id -> T.ety) (def : A.fun_def) : V.var V.VarId.vector * A.expression = let rsubst r = r in let locals = V.VarId.map (fun v -> { v with V.var_ty = ty_substitute rsubst tsubst v.V.var_ty }) def.A.locals in let body = expression_substitute tsubst def.body in (locals, body)