(** The following module defines micro-passes which operate on the pure AST *) open Errors open Pure open TranslateCore (** The local logger *) let log = L.pure_micro_passes_log type pn_ctx = string VarId.Map.t (** "pretty-name context": see [compute_pretty_names] *) (** This function computes pretty names for the variables in the pure AST. It relies on the "meta"-place information in the AST to generate naming constraints, and then uses those to compute the names. The way it works is as follows: - we only modify the names of the unnamed variables - whenever we see an rvalue/lvalue which is exactly an unnamed variable, and this value is linked to some meta-place information which contains a name and an empty path, we consider we should use this name Something important is that, for every variable we find, the name of this variable is influenced by the information we find *below* in the AST. For instance, the following situations happen: - let's say we evaluate: ``` match (ls : List) { List::Cons(x, hd) => { ... } } ``` Actually, in MIR, we get: ``` tmp := discriminant(ls); switch tmp { 0 => { x := (ls as Cons).0; hd := (ls as Cons).1; ... } } ``` If `ls` maps to a symbolic value `s0` upon evaluating the match in symbolic mode, we expand this value upon evaluating `tmp = discriminant(ls)`. However, at this point, we don't know which should be the names of the symbolic values we introduce for the fields of `Cons`! Let's imagine we have (for the `Cons` branch): `s0 ~~> Cons s1 s2`. The assigments lead to the following binding in the evaluation context: ``` x -> s1 hd -> s2 ``` When generating the symbolic AST, we save as meta-information that we assign `s1` to the place `x` and `s2` to the place `hd`. This way, we learn we can use the names `x` and `hd` for the variables which are introduced by the match: ``` match ls with | Cons x hd -> ... | ... ``` - TODO: inputs and end abstraction... *) let compute_pretty_names (def : fun_def) : fun_def = (* Small helpers *) (* * When we do branchings, we need to merge (the constraints saved in) the * contexts returned by the different branches. * * Note that by doing so, some mappings from var id to name * in one context may be overriden by the ones in the other context. * * This should be ok because: * - generally, the overriden variables should have been introduced *inside* * the branches, in which case we don't care * - or they were introduced before, in which case the naming should generally * be consistent? In the worse case, it isn't, but it leads only to less * readable code, not to unsoundness. This case should be pretty rare, * also. *) let merge_ctxs (ctx0 : pn_ctx) (ctx1 : pn_ctx) : pn_ctx = VarId.Map.fold (fun id name ctx -> VarId.Map.add id name ctx) ctx0 ctx1 in let merge_ctxs_ls (ctxs : pn_ctx list) : pn_ctx = List.fold_left (fun ctx0 ctx1 -> merge_ctxs ctx0 ctx1) VarId.Map.empty ctxs in let add_var (ctx : pn_ctx) (v : var) : pn_ctx = assert (not (VarId.Map.mem v.id ctx)); match v.basename with | None -> ctx | Some name -> VarId.Map.add v.id name ctx in let update_var (ctx : pn_ctx) (v : var) : var = match v.basename with | Some _ -> v | None -> ( match VarId.Map.find_opt v.id ctx with | None -> v | Some basename -> { v with basename = Some basename }) in let update_typed_lvalue ctx (lv : typed_lvalue) : typed_lvalue = let obj = object inherit [_] map_typed_lvalue method! visit_var _ v = update_var ctx v end in obj#visit_typed_lvalue () lv in let add_constraint (mp : mplace) (var_id : VarId.id) (ctx : pn_ctx) : pn_ctx = match (mp.name, mp.projection) with | Some name, [] -> (* Check if the variable already has a name - if not: insert the new name *) if VarId.Map.mem var_id ctx then ctx else VarId.Map.add var_id name ctx | _ -> ctx in let add_right_constraint (mp : mplace) (rv : typed_rvalue) (ctx : pn_ctx) : pn_ctx = match rv.value with | RvPlace { var = var_id; projection = [] } -> add_constraint mp var_id ctx | _ -> ctx in let add_opt_right_constraint (mp : mplace option) (rv : typed_rvalue) (ctx : pn_ctx) : pn_ctx = match mp with None -> ctx | Some mp -> add_right_constraint mp rv ctx in let add_opt_right_constraint_list ctx rvs = List.fold_left (fun ctx (mp, rv) -> add_opt_right_constraint mp rv ctx) ctx rvs in let add_left_constraint (lv : typed_lvalue) (ctx : pn_ctx) : pn_ctx = let obj = object (self) inherit [_] reduce_typed_lvalue method zero _ = VarId.Map.empty method plus ctx0 ctx1 _ = merge_ctxs (ctx0 ()) (ctx1 ()) method! visit_var _ v () = add_var (self#zero ()) v end in let ctx1 = obj#visit_typed_lvalue () lv () in merge_ctxs ctx ctx1 in (* *) let rec update_expression (e : expression) (ctx : pn_ctx) : pn_ctx * expression = match e with | Return _ | Fail -> (ctx, e) | Value (v, mp) -> update_value v mp ctx | Call call -> update_call call ctx | Let (lb, re, e) -> update_let lb re e ctx | Switch (scrut, mp, body) -> update_switch_body scrut mp body ctx | Meta (meta, e) -> update_meta meta e ctx (* *) and update_value (v : typed_rvalue) (mp : mplace option) (ctx : pn_ctx) : pn_ctx * expression = let ctx = add_opt_right_constraint mp v ctx in (ctx, Value (v, mp)) (* *) and update_call (call : call) (ctx : pn_ctx) : pn_ctx * expression = let ctx = add_opt_right_constraint_list ctx (List.combine call.args_mplaces call.args) in (ctx, Call call) (* *) and update_let (lv : typed_lvalue) (re : expression) (e : expression) (ctx : pn_ctx) : pn_ctx * expression = let ctx = add_left_constraint lv ctx in let ctx, re = update_expression re ctx in let ctx, e = update_expression e ctx in let lv = update_typed_lvalue ctx lv in (ctx, Let (lv, re, e)) (* *) and update_switch_body (scrut : typed_rvalue) (mp : mplace option) (body : switch_body) (ctx : pn_ctx) : pn_ctx * expression = let ctx = add_opt_right_constraint mp scrut ctx in let ctx, body = match body with | If (e_true, e_false) -> let ctx1, e_true = update_expression e_true ctx in let ctx2, e_false = update_expression e_false ctx in let ctx = merge_ctxs ctx1 ctx2 in (ctx, If (e_true, e_false)) | SwitchInt (int_ty, branches, otherwise) -> let ctx_branches_ls = List.map (fun (v, br) -> let ctx, br = update_expression br ctx in (ctx, (v, br))) branches in let ctx, otherwise = update_expression otherwise ctx in let ctxs, branches = List.split ctx_branches_ls in let ctxs = merge_ctxs_ls ctxs in let ctx = merge_ctxs ctx ctxs in (ctx, SwitchInt (int_ty, branches, otherwise)) | Match branches -> let ctx_branches_ls = List.map (fun br -> let ctx = add_left_constraint br.pat ctx in let ctx, branch = update_expression br.branch ctx in let pat = update_typed_lvalue ctx br.pat in (ctx, { pat; branch })) branches in let ctxs, branches = List.split ctx_branches_ls in let ctx = merge_ctxs_ls ctxs in (ctx, Match branches) in (ctx, Switch (scrut, mp, body)) (* *) and update_meta (meta : meta) (e : expression) (ctx : pn_ctx) : pn_ctx * expression = match meta with | Assignment (mp, rvalue) -> let ctx = add_right_constraint mp rvalue ctx in update_expression e ctx in let input_names = List.filter_map (fun (v : var) -> match v.basename with None -> None | Some name -> Some (v.id, name)) def.inputs in let ctx = VarId.Map.of_list input_names in let _, body = update_expression def.body ctx in { def with body } (** Remove the meta-information *) let remove_meta (def : fun_def) : fun_def = let obj = object inherit [_] map_expression as super method! visit_Meta env _ e = super#visit_expression env e end in let body = obj#visit_expression () def.body in { def with body } (** Inline the useless variable reassignments (a lot of variable assignments like `let x = y in ...ΓΏ` are introduced through the compilation to MIR and by the translation, and the variable used on the left is often unnamed *) let inline_useless_var_reassignments (def : fun_def) : fun_def = (* TODO *) def (** Filter the unused assignments (removes the unused variables, filters the function calls) *) let filter_unused_assignments (def : fun_def) : fun_def = (* TODO *) def (** Apply all the micro-passes to a function. [ctx]: used only for printing. *) let apply_passes_to_def (ctx : trans_ctx) (def : fun_def) : fun_def = (* Debug *) log#ldebug (lazy ("PureMicroPasses.apply_passes_to_def: " ^ Print.name_to_string def.basename ^ " (" ^ Print.option_to_string T.RegionGroupId.to_string def.back_id ^ ")")); (* First, find names for the variables which are unnamed *) let def = compute_pretty_names def in log#ldebug (lazy ("compute_pretty_name:\n" ^ fun_def_to_string ctx def)); (* TODO: we might want to leverage more the assignment meta-data, for * aggregates for instance. *) (* TODO: reorder the branches of the matches/switches *) (* The meta-information is now useless: remove it *) let def = remove_meta def in log#ldebug (lazy ("remove_meta:\n" ^ fun_def_to_string ctx def)); (* Inline the useless variable reassignments *) let def = inline_useless_var_reassignments def in log#ldebug (lazy ("inline_useless_var_assignments:\n" ^ fun_def_to_string ctx def)); (* Filter the unused assignments (removes the unused variables, filters * the function calls) *) let def = filter_unused_assignments def in log#ldebug (lazy ("filter_unused_assignments:\n" ^ fun_def_to_string ctx def)); (* TODO: deconstruct the monadic bindings into matches *) (* TODO: add unit arguments for functions with no arguments *) (* We are done *) def let apply_passes_to_pure_fun_translation (ctx : trans_ctx) (trans : pure_fun_translation) : pure_fun_translation = let forward, backwards = trans in let forward = apply_passes_to_def ctx forward in let backwards = List.map (apply_passes_to_def ctx) backwards in (forward, backwards)