(** This module defines printing functions for the types defined in Pure.ml *) open Pure open PureUtils module T = Types module V = Values module E = Expressions module A = LlbcAst module TypeDeclId = T.TypeDeclId module TypeVarId = T.TypeVarId module RegionId = T.RegionId module VariantId = T.VariantId module FieldId = T.FieldId module SymbolicValueId = V.SymbolicValueId module FunDeclId = A.FunDeclId type type_formatter = { type_var_id_to_string : TypeVarId.id -> string; type_decl_id_to_string : TypeDeclId.id -> string; } type value_formatter = { type_var_id_to_string : TypeVarId.id -> string; type_decl_id_to_string : TypeDeclId.id -> string; adt_variant_to_string : TypeDeclId.id -> VariantId.id -> string; var_id_to_string : VarId.id -> string; adt_field_names : TypeDeclId.id -> VariantId.id option -> string list option; } let value_to_type_formatter (fmt : value_formatter) : type_formatter = { type_var_id_to_string = fmt.type_var_id_to_string; type_decl_id_to_string = fmt.type_decl_id_to_string; } (* TODO: we need to store which variables we have encountered so far, and remove [var_id_to_string]. *) type ast_formatter = { type_var_id_to_string : TypeVarId.id -> string; type_decl_id_to_string : TypeDeclId.id -> string; adt_variant_to_string : TypeDeclId.id -> VariantId.id -> string; var_id_to_string : VarId.id -> string; adt_field_to_string : TypeDeclId.id -> VariantId.id option -> FieldId.id -> string option; adt_field_names : TypeDeclId.id -> VariantId.id option -> string list option; fun_decl_id_to_string : A.FunDeclId.id -> string; } let ast_to_value_formatter (fmt : ast_formatter) : value_formatter = { type_var_id_to_string = fmt.type_var_id_to_string; type_decl_id_to_string = fmt.type_decl_id_to_string; adt_variant_to_string = fmt.adt_variant_to_string; var_id_to_string = fmt.var_id_to_string; adt_field_names = fmt.adt_field_names; } let ast_to_type_formatter (fmt : ast_formatter) : type_formatter = let fmt = ast_to_value_formatter fmt in value_to_type_formatter fmt let name_to_string = Print.name_to_string let fun_name_to_string = Print.fun_name_to_string let option_to_string = Print.option_to_string let type_var_to_string = Print.Types.type_var_to_string let integer_type_to_string = Print.Types.integer_type_to_string let scalar_value_to_string = Print.Values.scalar_value_to_string let mk_type_formatter (type_decls : T.type_decl TypeDeclId.Map.t) (type_params : type_var list) : type_formatter = let type_var_id_to_string vid = let var = T.TypeVarId.nth type_params vid in type_var_to_string var in let type_decl_id_to_string def_id = let def = T.TypeDeclId.Map.find def_id type_decls in name_to_string def.name in { type_var_id_to_string; type_decl_id_to_string } (* TODO: there is a bit of duplication with Print.fun_decl_to_ast_formatter. TODO: use the pure defs as inputs? Note that it is a bit annoying for the functions (there is a difference between the forward/backward functions...) while we only need those definitions to lookup proper names for the def ids. *) let mk_ast_formatter (type_decls : T.type_decl TypeDeclId.Map.t) (fun_decls : A.fun_decl FunDeclId.Map.t) (type_params : type_var list) : ast_formatter = let type_var_id_to_string vid = let var = T.TypeVarId.nth type_params vid in type_var_to_string var in let type_decl_id_to_string def_id = let def = T.TypeDeclId.Map.find def_id type_decls in name_to_string def.name in let adt_variant_to_string = Print.Contexts.type_ctx_to_adt_variant_to_string_fun type_decls in let var_id_to_string vid = (* TODO: somehow lookup in the context *) "^" ^ VarId.to_string vid in let adt_field_names = Print.Contexts.type_ctx_to_adt_field_names_fun type_decls in let adt_field_to_string = Print.LlbcAst.type_ctx_to_adt_field_to_string_fun type_decls in let fun_decl_id_to_string def_id = let def = A.FunDeclId.Map.find def_id fun_decls in fun_name_to_string def.name in { type_var_id_to_string; type_decl_id_to_string; adt_variant_to_string; var_id_to_string; adt_field_names; adt_field_to_string; fun_decl_id_to_string; } let type_id_to_string (fmt : type_formatter) (id : type_id) : string = match id with | AdtId id -> fmt.type_decl_id_to_string id | Tuple -> "" | Assumed aty -> ( match aty with | State -> "State" | Result -> "Result" | Option -> "Option" | Vec -> "Vec") let rec ty_to_string (fmt : type_formatter) (ty : ty) : string = match ty with | Adt (id, tys) -> ( let tys = List.map (ty_to_string fmt) tys in match id with | Tuple -> "(" ^ String.concat " * " tys ^ ")" | AdtId _ | Assumed _ -> let tys = if tys = [] then "" else " " ^ String.concat " " tys in type_id_to_string fmt id ^ tys) | TypeVar tv -> fmt.type_var_id_to_string tv | Bool -> "bool" | Char -> "char" | Integer int_ty -> integer_type_to_string int_ty | Str -> "str" | Array aty -> "[" ^ ty_to_string fmt aty ^ "; ?]" | Slice sty -> "[" ^ ty_to_string fmt sty ^ "]" | Arrow (arg_ty, ret_ty) -> ty_to_string fmt arg_ty ^ " -> " ^ ty_to_string fmt ret_ty let field_to_string fmt (f : field) : string = match f.field_name with | None -> ty_to_string fmt f.field_ty | Some field_name -> field_name ^ " : " ^ ty_to_string fmt f.field_ty let variant_to_string fmt (v : variant) : string = v.variant_name ^ "(" ^ String.concat ", " (List.map (field_to_string fmt) v.fields) ^ ")" let type_decl_to_string (fmt : type_formatter) (def : type_decl) : string = let types = def.type_params in let name = name_to_string def.name in let params = if types = [] then "" else " " ^ String.concat " " (List.map type_var_to_string types) in match def.kind with | Struct fields -> if List.length fields > 0 then let fields = String.concat "," (List.map (fun f -> "\n " ^ field_to_string fmt f) fields) in "struct " ^ name ^ params ^ "{" ^ fields ^ "}" else "struct " ^ name ^ params ^ "{}" | Enum variants -> let variants = List.map (fun v -> "| " ^ variant_to_string fmt v) variants in let variants = String.concat "\n" variants in "enum " ^ name ^ params ^ " =\n" ^ variants | Opaque -> "opaque type " ^ name ^ params let var_to_varname (v : var) : string = match v.basename with | Some name -> name ^ "^" ^ VarId.to_string v.id | None -> "^" ^ VarId.to_string v.id let var_to_string (fmt : type_formatter) (v : var) : string = let varname = var_to_varname v in "(" ^ varname ^ " : " ^ ty_to_string fmt v.ty ^ ")" let rec projection_to_string (fmt : ast_formatter) (inside : string) (p : projection) : string = match p with | [] -> inside | pe :: p' -> ( let s = projection_to_string fmt inside p' in match pe.pkind with | E.ProjOption variant_id -> assert (variant_id = T.option_some_id); assert (pe.field_id = T.FieldId.zero); "(" ^ s ^ "as Option::Some)." ^ T.FieldId.to_string pe.field_id | E.ProjTuple _ -> "(" ^ s ^ ")." ^ T.FieldId.to_string pe.field_id | E.ProjAdt (adt_id, opt_variant_id) -> ( let field_name = match fmt.adt_field_to_string adt_id opt_variant_id pe.field_id with | Some field_name -> field_name | None -> T.FieldId.to_string pe.field_id in match opt_variant_id with | None -> "(" ^ s ^ ")." ^ field_name | Some variant_id -> let variant_name = fmt.adt_variant_to_string adt_id variant_id in "(" ^ s ^ " as " ^ variant_name ^ ")." ^ field_name)) let mplace_to_string (fmt : ast_formatter) (p : mplace) : string = let name = match p.name with None -> "" | Some name -> name in (* We add the "llbc" suffix to the variable index, because meta-places * use indices of the variables in the original LLBC program, while * regular places use indices for the pure variables: we want to make * this explicit, otherwise it is confusing. *) let name = name ^ "^" ^ V.VarId.to_string p.var_id ^ "llbc" in projection_to_string fmt name p.projection let place_to_string (fmt : ast_formatter) (p : place) : string = (* TODO: improve that *) let var = fmt.var_id_to_string p.var in projection_to_string fmt var p.projection let adt_g_value_to_string (fmt : value_formatter) (value_to_string : 'v -> string) (variant_id : VariantId.id option) (field_values : 'v list) (ty : ty) : string = let field_values = List.map value_to_string field_values in match ty with | Adt (Tuple, _) -> (* Tuple *) "(" ^ String.concat ", " field_values ^ ")" | Adt (AdtId def_id, _) -> (* "Regular" ADT *) let adt_ident = match variant_id with | Some vid -> fmt.adt_variant_to_string def_id vid | None -> fmt.type_decl_id_to_string def_id in if field_values <> [] then match fmt.adt_field_names def_id variant_id with | None -> let field_values = String.concat ", " field_values in adt_ident ^ " (" ^ field_values ^ ")" | Some field_names -> let field_values = List.combine field_names field_values in let field_values = List.map (fun (field, value) -> field ^ " = " ^ value ^ ";") field_values in let field_values = String.concat " " field_values in adt_ident ^ " { " ^ field_values ^ " }" else adt_ident | Adt (Assumed aty, _) -> ( (* Assumed type *) match aty with | State -> (* The `State` type is opaque: we can't get there *) raise (Failure "Unreachable") | Result -> let variant_id = Option.get variant_id in if variant_id = result_return_id then match field_values with | [ v ] -> "@Result::Return " ^ v | _ -> raise (Failure "Result::Return takes exactly one value") else if variant_id = result_fail_id then ( assert (field_values = []); "@Result::Fail") else raise (Failure "Unreachable: improper variant id for result type") | Option -> let variant_id = Option.get variant_id in if variant_id = option_some_id then match field_values with | [ v ] -> "@Option::Some " ^ v | _ -> raise (Failure "Option::Some takes exactly one value") else if variant_id = option_none_id then ( assert (field_values = []); "@Option::None") else raise (Failure "Unreachable: improper variant id for result type") | Vec -> assert (variant_id = None); let field_values = List.mapi (fun i v -> string_of_int i ^ " -> " ^ v) field_values in "Vec [" ^ String.concat "; " field_values ^ "]") | _ -> let fmt = value_to_type_formatter fmt in raise (Failure ("Inconsistently typed value: expected ADT type but found:" ^ "\n- ty: " ^ ty_to_string fmt ty ^ "\n- variant_id: " ^ Print.option_to_string VariantId.to_string variant_id)) let rec typed_rvalue_to_string (fmt : ast_formatter) (v : typed_rvalue) : string = match v.value with | RvConcrete cv -> Print.Values.constant_value_to_string cv | RvPlace p -> place_to_string fmt p | RvAdt av -> adt_g_value_to_string (ast_to_value_formatter fmt) (typed_rvalue_to_string fmt) av.variant_id av.field_values v.ty let var_or_dummy_to_string (fmt : ast_formatter) (v : var_or_dummy) : string = match v with | Var (v, None) -> var_to_string (ast_to_type_formatter fmt) v | Var (v, Some mp) -> let mp = "[@mplace=" ^ mplace_to_string fmt mp ^ "]" in "(" ^ var_to_varname v ^ " " ^ mp ^ " : " ^ ty_to_string (ast_to_type_formatter fmt) v.ty ^ ")" | Dummy -> "_" let rec typed_lvalue_to_string (fmt : ast_formatter) (v : typed_lvalue) : string = match v.value with | LvConcrete cv -> Print.Values.constant_value_to_string cv | LvVar var -> var_or_dummy_to_string fmt var | LvAdt av -> adt_g_value_to_string (ast_to_value_formatter fmt) (typed_lvalue_to_string fmt) av.variant_id av.field_values v.ty let fun_sig_to_string (fmt : ast_formatter) (sg : fun_sig) : string = let ty_fmt = ast_to_type_formatter fmt in let type_params = List.map type_var_to_string sg.type_params in let inputs = List.map (ty_to_string ty_fmt) sg.inputs in let outputs = List.map (ty_to_string ty_fmt) sg.outputs in let outputs = match outputs with | [] -> (* Can happen with backward functions which don't give back * anything (shared borrows only) *) "()" | [ out ] -> out | outputs -> "(" ^ String.concat " * " outputs ^ ")" in let all_types = List.concat [ type_params; inputs; [ outputs ] ] in String.concat " -> " all_types let inst_fun_sig_to_string (fmt : ast_formatter) (sg : inst_fun_sig) : string = let ty_fmt = ast_to_type_formatter fmt in let inputs = List.map (ty_to_string ty_fmt) sg.inputs in let outputs = List.map (ty_to_string ty_fmt) sg.outputs in let outputs = match outputs with | [] -> "()" | [ out ] -> out | outputs -> "(" ^ String.concat " * " outputs ^ ")" in let all_types = List.append inputs [ outputs ] in String.concat " -> " all_types let regular_fun_id_to_string (fmt : ast_formatter) (fun_id : A.fun_id) : string = match fun_id with | A.Regular fid -> fmt.fun_decl_id_to_string fid | A.Assumed fid -> ( match fid with | A.Replace -> "core::mem::replace" | A.BoxNew -> "alloc::boxed::Box::new" | A.BoxDeref -> "core::ops::deref::Deref::deref" | A.BoxDerefMut -> "core::ops::deref::DerefMut::deref_mut" | A.BoxFree -> "alloc::alloc::box_free" | A.VecNew -> "alloc::vec::Vec::new" | A.VecPush -> "alloc::vec::Vec::push" | A.VecInsert -> "alloc::vec::Vec::insert" | A.VecLen -> "alloc::vec::Vec::len" | A.VecIndex -> "core::ops::index::Index::index" | A.VecIndexMut -> "core::ops::index::IndexMut::index_mut") let fun_suffix (rg_id : T.RegionGroupId.id option) : string = match rg_id with | None -> "" | Some rg_id -> "@" ^ T.RegionGroupId.to_string rg_id let unop_to_string (unop : unop) : string = match unop with Not -> "¬" | Neg _ -> "-" let binop_to_string = Print.LlbcAst.binop_to_string let fun_id_to_string (fmt : ast_formatter) (fun_id : fun_id) : string = match fun_id with | Regular (fun_id, rg_id) -> let f = regular_fun_id_to_string fmt fun_id in f ^ fun_suffix rg_id | Unop unop -> unop_to_string unop | Binop (binop, int_ty) -> binop_to_string binop ^ "<" ^ integer_type_to_string int_ty ^ ">" let meta_to_string (fmt : ast_formatter) (meta : meta) : string = let meta = match meta with | Assignment (lp, rv, rp) -> let rp = match rp with | None -> "" | Some rp -> " [@src=" ^ mplace_to_string fmt rp ^ "]" in "@assign(" ^ mplace_to_string fmt lp ^ " := " ^ typed_rvalue_to_string fmt rv ^ rp ^ ")" in "@meta[" ^ meta ^ "]" let rec texpression_to_string (fmt : ast_formatter) (inner : bool) (indent : string) (indent_incr : string) (e : texpression) : string = match e.e with | Value (v, mp) -> let mp = match mp with | None -> "" | Some mp -> " [@mplace=" ^ mplace_to_string fmt mp ^ "]" in let e = typed_rvalue_to_string fmt v ^ mp in if inner then "(" ^ e ^ ")" else e | App _ -> (* Recursively destruct the app, to have a pair (app, arguments list) *) let app, args = destruct_apps e in (* Convert to string *) app_to_string fmt inner indent indent_incr app args | Abs _ -> let xl, e = destruct_abs_list e in let e = abs_to_string fmt indent indent_incr xl e in if inner then "(" ^ e ^ ")" else e | Func _ -> (* Func without arguments *) app_to_string fmt inner indent indent_incr e [] | Let (monadic, lv, re, e) -> let e = let_to_string fmt indent indent_incr monadic lv re e in if inner then "(" ^ e ^ ")" else e | Switch (scrutinee, body) -> let e = switch_to_string fmt indent indent_incr scrutinee body in if inner then "(" ^ e ^ ")" else e | Meta (meta, e) -> let meta = meta_to_string fmt meta in let e = texpression_to_string fmt inner indent indent_incr e in let e = meta ^ "\n" ^ indent ^ e in if inner then "(" ^ e ^ ")" else e (*and texpression_to_string (fmt : ast_formatter) (inner : bool) (indent : string) (indent_incr : string) (e : texpression) : string = expression_to_string fmt inner indent indent_incr inner e.e*) and app_to_string (fmt : ast_formatter) (inner : bool) (indent : string) (indent_incr : string) (app : texpression) (args : texpression list) : string = (* There are two possibilities: either the `app` is an instantiated, * top-level function, or it is a "regular" expression *) let app, tys = match app.e with | Func func -> (* Function case *) (* Convert the function identifier *) let fun_id = fun_id_to_string fmt func.func in (* Convert the type instantiation *) let ty_fmt = ast_to_type_formatter fmt in let tys = List.map (ty_to_string ty_fmt) func.type_params in (* *) (fun_id, tys) | _ -> (* "Regular" expression case *) let inner = args <> [] || (args = [] && inner) in (texpression_to_string fmt inner indent indent_incr app, []) in (* Convert the arguments. * The arguments are expressions, so indentation might get weird... (though * those expressions will in most cases just be values) *) let arg_to_string = let inner = true in let indent1 = indent ^ indent_incr in texpression_to_string fmt inner indent1 indent_incr in let args = List.map arg_to_string args in let all_args = List.append tys args in (* Put together *) let e = if all_args = [] then app else app ^ " " ^ String.concat " " all_args in (* Add parentheses *) if all_args <> [] && inner then "(" ^ e ^ ")" else e and abs_to_string (fmt : ast_formatter) (indent : string) (indent_incr : string) (xl : typed_lvalue list) (e : texpression) : string = let xl = List.map (typed_lvalue_to_string fmt) xl in let e = texpression_to_string fmt false indent indent_incr e in "λ " ^ String.concat " " xl ^ ". " ^ e and let_to_string (fmt : ast_formatter) (indent : string) (indent_incr : string) (monadic : bool) (lv : typed_lvalue) (re : texpression) (e : texpression) : string = let indent1 = indent ^ indent_incr in let inner = false in let re = texpression_to_string fmt inner indent1 indent_incr re in let e = texpression_to_string fmt inner indent indent_incr e in let lv = typed_lvalue_to_string fmt lv in if monadic then lv ^ " <-- " ^ re ^ ";\n" ^ indent ^ e else "let " ^ lv ^ " = " ^ re ^ " in\n" ^ indent ^ e and switch_to_string (fmt : ast_formatter) (indent : string) (indent_incr : string) (scrutinee : texpression) (body : switch_body) : string = let indent1 = indent ^ indent_incr in (* Printing can mess up on the scrutinee, because it is an expression - but * in most situations it will be a value or a function call, so it should be * ok*) let scrut = texpression_to_string fmt true indent1 indent_incr scrutinee in let e_to_string = texpression_to_string fmt false indent1 indent_incr in match body with | If (e_true, e_false) -> let e_true = e_to_string e_true in let e_false = e_to_string e_false in "if " ^ scrut ^ "\n" ^ indent ^ "then\n" ^ indent1 ^ e_true ^ "\n" ^ indent ^ "else\n" ^ indent1 ^ e_false | Match branches -> let branch_to_string (b : match_branch) : string = let pat = typed_lvalue_to_string fmt b.pat in indent ^ "| " ^ pat ^ " ->\n" ^ indent1 ^ e_to_string b.branch in let branches = List.map branch_to_string branches in "match " ^ scrut ^ " with\n" ^ String.concat "\n" branches let fun_decl_to_string (fmt : ast_formatter) (def : fun_decl) : string = let type_fmt = ast_to_type_formatter fmt in let name = fun_name_to_string def.basename ^ fun_suffix def.back_id in let signature = fun_sig_to_string fmt def.signature in match def.body with | None -> "val " ^ name ^ " :\n " ^ signature | Some body -> let inner = false in let indent = " " in let inputs = List.map (var_to_string type_fmt) body.inputs in let inputs = if inputs = [] then indent else " fun " ^ String.concat " " inputs ^ " ->\n" ^ indent in let body = texpression_to_string fmt inner indent indent body.body in "let " ^ name ^ " :\n " ^ signature ^ " =\n" ^ inputs ^ body