(* TODO: use one letter abbreviations for modules *) open Identifiers module T = Types module V = Values module E = Expressions module A = CfimAst module C = Contexts module M = Modules (** Pretty-printing for types *) module Types = struct let type_var_to_string (tv : T.type_var) : string = tv.tv_name let region_var_to_string (rv : T.region_var) : string = match rv.rv_name with | Some name -> name | None -> T.RegionVarId.to_string rv.rv_index let region_to_string (rid_to_string : 'rid -> string) (r : 'rid T.region) : string = match r with Static -> "'static" | Var rid -> rid_to_string rid let erased_region_to_string (_ : T.erased_region) : string = "'_" let ref_kind_to_string (rk : T.ref_kind) : string = match rk with Mut -> "Mut" | Shared -> "Shared" let assumed_ty_to_string (_ : T.assumed_ty) : string = "Box" (* TODO: This is probably not the most OCaml-like way of doing this *) type 'r type_formatter = { r_to_string : 'r -> string; (* TODO: remove this and put the name everywhere instead? *) type_var_id_to_string : T.TypeVarId.id -> string; (* TODO: remove this and put the name everywhere instead? *) type_def_id_to_string : T.TypeDefId.id -> string; } type etype_formatter = T.erased_region type_formatter type rtype_formatter = T.RegionVarId.id T.region type_formatter let integer_type_to_string = function | T.Isize -> "isize" | T.I8 -> "i8" | T.I16 -> "i16" | T.I32 -> "i32" | T.I64 -> "i64" | T.I128 -> "i128" | T.Usize -> "usize" | T.U8 -> "u8" | T.U16 -> "u16" | T.U32 -> "u32" | T.U64 -> "u64" | T.U128 -> "u128" let rec ty_to_string (fmt : 'r type_formatter) (ty : 'r T.ty) : string = match ty with | T.Adt (id, regions, tys) -> let params = params_to_string fmt regions tys in fmt.type_def_id_to_string id ^ params | T.TypeVar tv -> fmt.type_var_id_to_string tv | T.Bool -> "bool" | T.Char -> "char" | T.Never -> "⊥" | T.Integer int_ty -> integer_type_to_string int_ty | T.Str -> "str" | T.Array aty -> "[" ^ ty_to_string fmt aty ^ "; ?]" | T.Slice sty -> "[" ^ ty_to_string fmt sty ^ "]" | T.Ref (r, rty, ref_kind) -> ( match ref_kind with | T.Mut -> "&" ^ fmt.r_to_string r ^ " mut (" ^ ty_to_string fmt rty ^ ")" | T.Shared -> "&" ^ fmt.r_to_string r ^ " (" ^ ty_to_string fmt rty ^ ")") | T.Tuple tys -> "(" ^ String.concat ", " (List.map (ty_to_string fmt) tys) ^ ")" | T.Assumed (aty, regions, tys) -> ( let params = params_to_string fmt regions tys in match aty with Box -> "std::boxed::Box" ^ params) and params_to_string (fmt : 'r type_formatter) (regions : 'r list) (types : 'r T.ty list) : string = if List.length regions + List.length types > 0 then let regions = List.map fmt.r_to_string regions in let types = List.map (ty_to_string fmt) types in let params = String.concat ", " (List.append regions types) in "<" ^ params ^ ">" else "" let rty_to_string fmt (ty : T.rty) : string = ty_to_string fmt ty let ety_to_string fmt (ty : T.ety) : string = ty_to_string fmt ty let field_to_string fmt (f : T.field) : string = f.field_name ^ " : " ^ ty_to_string fmt f.field_ty let variant_to_string fmt (v : T.variant) : string = v.variant_name ^ "(" ^ String.concat ", " (List.map (field_to_string fmt) (T.FieldId.vector_to_list v.fields)) ^ ")" let name_to_string (name : name) : string = String.concat "::" name let type_def_to_string (type_def_id_to_string : T.TypeDefId.id -> string) (def : T.type_def) : string = let regions : T.region_var list = T.RegionVarId.vector_to_list def.region_params in let types : T.type_var list = T.TypeVarId.vector_to_list def.type_params in let rid_to_string rid = match List.find_opt (fun rv -> rv.T.rv_index = rid) regions with | Some rv -> region_var_to_string rv | None -> failwith "Unreachable" in let r_to_string = region_to_string rid_to_string in let type_var_id_to_string id = match List.find_opt (fun tv -> tv.T.tv_index = id) types with | Some tv -> type_var_to_string tv | None -> failwith "Unreachable" in let fmt = { r_to_string; type_var_id_to_string; type_def_id_to_string } in let name = name_to_string def.name in let params = if List.length regions + List.length types > 0 then let regions = List.map region_var_to_string regions in let types = List.map type_var_to_string types in let params = String.concat ", " (List.append regions types) in "<" ^ params ^ ">" else "" in match def.kind with | T.Struct fields -> let fields = T.FieldId.vector_to_list fields in if List.length fields > 0 then let fields = String.concat "," (List.map (fun f -> "\n " ^ field_to_string fmt f) fields) in "struct " ^ name ^ params ^ "{" ^ fields ^ "}" else "struct " ^ name ^ params ^ "{}" | T.Enum variants -> let variants = T.VariantId.vector_to_list variants in let variants = List.map (fun v -> "| " ^ variant_to_string fmt v) variants in let variants = String.concat "\n" variants in "enum " ^ name ^ params ^ " =\n" ^ variants end module PT = Types (* local module *) (** Pretty-printing for values *) module Values = struct type value_formatter = { r_to_string : T.RegionVarId.id -> string; type_var_id_to_string : T.TypeVarId.id -> string; type_def_id_to_string : T.TypeDefId.id -> string; adt_variant_to_string : T.TypeDefId.id -> T.VariantId.id -> string; var_id_to_string : V.VarId.id -> string; adt_field_names : T.TypeDefId.id -> T.VariantId.id option -> string list option; } let value_to_etype_formatter (fmt : value_formatter) : PT.etype_formatter = { PT.r_to_string = PT.erased_region_to_string; PT.type_var_id_to_string = fmt.type_var_id_to_string; PT.type_def_id_to_string = fmt.type_def_id_to_string; } let value_to_rtype_formatter (fmt : value_formatter) : PT.rtype_formatter = { PT.r_to_string = PT.region_to_string fmt.r_to_string; PT.type_var_id_to_string = fmt.type_var_id_to_string; PT.type_def_id_to_string = fmt.type_def_id_to_string; } let var_id_to_string (id : V.VarId.id) : string = "var@" ^ V.VarId.to_string id let var_to_string (v : V.var) : string = match v.name with None -> var_id_to_string v.index | Some name -> name let big_int_to_string (bi : V.big_int) : string = Z.to_string bi let scalar_value_to_string (sv : V.scalar_value) : string = big_int_to_string sv.value ^ ": " ^ PT.integer_type_to_string sv.int_ty let constant_value_to_string (cv : V.constant_value) : string = match cv with | Scalar sv -> scalar_value_to_string sv | Bool b -> Bool.to_string b | Char c -> String.make 1 c | String s -> s let symbolic_value_id_to_string (id : V.SymbolicValueId.id) : string = "s@" ^ V.SymbolicValueId.to_string id let symbolic_value_to_string (fmt : PT.rtype_formatter) (sv : V.symbolic_value) : string = symbolic_value_id_to_string sv.sv_id ^ " : " ^ PT.ty_to_string fmt sv.sv_ty let region_id_to_string (rid : V.RegionId.id) : string = "r@" ^ V.RegionId.to_string rid let symbolic_proj_comp_to_string (fmt : PT.rtype_formatter) (sp : V.symbolic_proj_comp) : string = let regions = V.RegionId.set_to_string sp.rset_ended in "proj_comp " ^ regions ^ " (" ^ symbolic_value_to_string fmt sp.svalue ^ ")" let rec typed_value_to_string (fmt : value_formatter) (v : V.typed_value) : string = let ety_fmt = value_to_etype_formatter fmt in match v.value with | Concrete cv -> constant_value_to_string cv | Adt av -> let adt_ident = match av.variant_id with | Some vid -> fmt.adt_variant_to_string av.def_id vid | None -> fmt.type_def_id_to_string av.def_id in let field_values = T.FieldId.vector_to_list av.field_values in let field_values = List.map (typed_value_to_string fmt) field_values in if List.length field_values > 0 then match fmt.adt_field_names av.V.def_id av.V.variant_id with | None -> let field_values = String.concat ", " field_values in adt_ident ^ " (" ^ field_values ^ ")" | Some field_names -> let field_values = List.combine field_names field_values in let field_values = List.map (fun (field, value) -> field ^ " = " ^ value ^ ";") field_values in let field_values = String.concat "; " field_values in adt_ident ^ " { " ^ field_values ^ " }" else adt_ident | Tuple values -> let values = T.FieldId.vector_to_list values in let values = String.concat ", " (List.map (typed_value_to_string fmt) values) in "(" ^ values ^ ")" | Bottom -> "⊥ : " ^ PT.ety_to_string ety_fmt v.ty | Assumed av -> ( match av with Box bv -> "@Box(" ^ typed_value_to_string fmt bv ^ ")") | Borrow bc -> borrow_content_to_string fmt bc | Loan lc -> loan_content_to_string fmt lc | Symbolic sp -> symbolic_proj_comp_to_string (value_to_rtype_formatter fmt) sp and borrow_content_to_string (fmt : value_formatter) (bc : V.borrow_content) : string = match bc with | SharedBorrow bid -> "⌊shared@" ^ V.BorrowId.to_string bid ^ "⌋" | MutBorrow (bid, tv) -> "&mut@" ^ V.BorrowId.to_string bid ^ " (" ^ typed_value_to_string fmt tv ^ ")" | InactivatedMutBorrow bid -> "⌊inactivated_mut@" ^ V.BorrowId.to_string bid ^ "⌋" and loan_content_to_string (fmt : value_formatter) (lc : V.loan_content) : string = match lc with | SharedLoan (loans, v) -> let loans = V.BorrowId.set_to_string loans in "@shared_loan(" ^ loans ^ ", " ^ typed_value_to_string fmt v ^ ")" | MutLoan bid -> "⌊mut@" ^ V.BorrowId.to_string bid ^ "⌋" let symbolic_value_proj_to_string (fmt : value_formatter) (sv : V.symbolic_value) (rty : T.rty) : string = symbolic_value_id_to_string sv.sv_id ^ " : " ^ PT.ty_to_string (value_to_rtype_formatter fmt) sv.sv_ty ^ " <: " ^ PT.ty_to_string (value_to_rtype_formatter fmt) rty let rec abstract_shared_borrows_to_string (fmt : value_formatter) (abs : V.abstract_shared_borrows) : string = match abs with | AsbSet bs -> V.BorrowId.set_to_string bs | AsbProjReborrows (sv, rty) -> "{" ^ symbolic_value_proj_to_string fmt sv rty ^ "}" | AsbUnion (asb1, asb2) -> abstract_shared_borrows_to_string fmt asb1 ^ " U " ^ abstract_shared_borrows_to_string fmt asb2 let rec typed_avalue_to_string (fmt : value_formatter) (v : V.typed_avalue) : string = let rty_fmt = value_to_rtype_formatter fmt in match v.avalue with | AConcrete cv -> constant_value_to_string cv | AAdt av -> let adt_ident = match av.avariant_id with | Some vid -> fmt.adt_variant_to_string av.adef_id vid | None -> fmt.type_def_id_to_string av.adef_id in let field_values = T.FieldId.vector_to_list av.afield_values in if List.length field_values > 0 then let field_values = String.concat " " (List.map (typed_avalue_to_string fmt) field_values) in adt_ident ^ " " ^ field_values else adt_ident | ATuple values -> let values = T.FieldId.vector_to_list values in let values = String.concat ", " (List.map (typed_avalue_to_string fmt) values) in "(" ^ values ^ ")" | ABottom -> "⊥ : " ^ PT.rty_to_string rty_fmt v.aty | ALoan lc -> aloan_content_to_string fmt lc | ABorrow bc -> aborrow_content_to_string fmt bc | AAssumed av -> ( match av with ABox bv -> "@Box(" ^ typed_avalue_to_string fmt bv ^ ")") | AProj pv -> aproj_to_string fmt pv and aloan_content_to_string (fmt : value_formatter) (lc : V.aloan_content) : string = match lc with | AMutLoan (bid, av) -> "⌊mut@" ^ V.BorrowId.to_string bid ^ ", " ^ typed_avalue_to_string fmt av ^ "⌋" | ASharedLoan (loans, v, av) -> let loans = V.BorrowId.set_to_string loans in "@shared_loan(" ^ loans ^ ", " ^ typed_value_to_string fmt v ^ ", " ^ typed_avalue_to_string fmt av ^ ")" | AEndedMutLoan ml -> "@ended_mut_loan{ given_back=" ^ typed_value_to_string fmt ml.given_back ^ "; child=" ^ typed_avalue_to_string fmt ml.child ^ " }" | AEndedSharedLoan (v, av) -> "@ended_shared_loan(" ^ typed_value_to_string fmt v ^ ", " ^ typed_avalue_to_string fmt av ^ ")" | AIgnoredMutLoan (bid, av) -> "@ignored_mut_loan(" ^ V.BorrowId.to_string bid ^ ", " ^ typed_avalue_to_string fmt av ^ ")" | AIgnoredSharedLoan asb -> "@ignored_shared_loan(" ^ abstract_shared_borrows_to_string fmt asb ^ ")" and aborrow_content_to_string (fmt : value_formatter) (bc : V.aborrow_content) : string = match bc with | AMutBorrow (bid, av) -> "&mut@" ^ V.BorrowId.to_string bid ^ " (" ^ typed_avalue_to_string fmt av ^ ")" | ASharedBorrow bid -> "⌊shared@" ^ V.BorrowId.to_string bid ^ "⌋" | AIgnoredMutBorrow av -> "@ignored_mut_borrow(" ^ typed_avalue_to_string fmt av ^ ")" | AEndedIgnoredMutLoan ml -> "@ended_ignored_mut_borrow{ given_back=" ^ typed_avalue_to_string fmt ml.given_back ^ "; child: " ^ typed_avalue_to_string fmt ml.child ^ "}" | AIgnoredSharedBorrow sb -> "@ignored_shared_borrow(" ^ abstract_shared_borrows_to_string fmt sb ^ ")" and aproj_to_string (fmt : value_formatter) (pv : V.aproj) : string = match pv with | AProjLoans sv -> "proj_loans (" ^ symbolic_value_to_string (value_to_rtype_formatter fmt) sv ^ ")" | AProjBorrows (sv, rty) -> "proj_borrows (" ^ symbolic_value_proj_to_string fmt sv rty ^ ")" let abs_to_string (fmt : value_formatter) (abs : V.abs) : string = let avs = List.map (fun av -> " " ^ typed_avalue_to_string fmt av) abs.avalues in let avs = String.concat ",\n" avs in "abs@" ^ V.AbstractionId.to_string abs.abs_id ^ "{parents=" ^ V.AbstractionId.set_to_string abs.parents ^ "}" ^ "{regions=" ^ V.RegionId.set_to_string abs.regions ^ "}" ^ " {\n" ^ avs ^ "\n}" end module PV = Values (* local module *) (** Pretty-printing for contexts *) module Contexts = struct let env_value_to_string (fmt : PV.value_formatter) (ev : C.env_value) : string = match ev with | Var (var, tv) -> PV.var_to_string var ^ " -> " ^ PV.typed_value_to_string fmt tv ^ " ;" | Abs abs -> PV.abs_to_string fmt abs | Frame -> failwith "Can't print a Frame element" let env_to_string (fmt : PV.value_formatter) (env : C.env) : string = "{\n" ^ String.concat "\n" (List.map (fun ev -> " " ^ env_value_to_string fmt ev) env) ^ "\n}" type ctx_formatter = PV.value_formatter let ctx_to_etype_formatter (fmt : ctx_formatter) : PT.etype_formatter = PV.value_to_etype_formatter fmt let ctx_to_rtype_formatter (fmt : ctx_formatter) : PT.rtype_formatter = PV.value_to_rtype_formatter fmt let type_ctx_to_adt_variant_to_string_fun (ctx : T.type_def T.TypeDefId.vector) : T.TypeDefId.id -> T.VariantId.id -> string = fun def_id variant_id -> let def = T.TypeDefId.nth ctx def_id in match def.kind with | Struct _ -> failwith "Unreachable" | Enum variants -> let variant = T.VariantId.nth variants variant_id in PT.name_to_string def.name ^ "::" ^ variant.variant_name let type_ctx_to_adt_field_names_fun (ctx : T.type_def T.TypeDefId.vector) : T.TypeDefId.id -> T.VariantId.id option -> string list option = fun def_id opt_variant_id -> let def = T.TypeDefId.nth ctx def_id in let fields = T.type_def_get_fields def opt_variant_id in (* TODO: the field name should be optional?? *) let fields = T.FieldId.map (fun f -> f.T.field_name) fields in Some (T.FieldId.vector_to_list fields) let eval_ctx_to_ctx_formatter (ctx : C.eval_ctx) : ctx_formatter = (* We shouldn't use r_to_string *) let r_to_string _ = failwith "Unexpected use of r_to_string" in let type_var_id_to_string vid = let v = C.lookup_type_var ctx vid in v.tv_name in let type_def_id_to_string def_id = let def = T.TypeDefId.nth ctx.type_context def_id in PT.name_to_string def.name in let adt_variant_to_string = type_ctx_to_adt_variant_to_string_fun ctx.type_context in let var_id_to_string vid = let var = C.ctx_lookup_var ctx vid in PV.var_to_string var in let adt_field_names = type_ctx_to_adt_field_names_fun ctx.C.type_context in { r_to_string; type_var_id_to_string; type_def_id_to_string; adt_variant_to_string; var_id_to_string; adt_field_names; } (** Split an [env] at every occurrence of [Frame], eliminating those elements. Also reorders the frames and the values in the frames according to the following order: * frames: from the current frame to the first pushed (oldest frame) * values: from the first pushed (oldest) to the last pushed *) let split_env_according_to_frames (env : C.env) : C.env list = let rec split_aux (frames : C.env list) (curr_frame : C.env) (env : C.env) = match env with | [] -> if List.length curr_frame > 0 then curr_frame :: frames else frames | Frame :: env' -> split_aux (curr_frame :: frames) [] env' | ev :: env' -> split_aux frames (ev :: curr_frame) env' in let frames = split_aux [] [] env in frames let eval_ctx_to_string (ctx : C.eval_ctx) : string = let fmt = eval_ctx_to_ctx_formatter ctx in let frames = split_env_according_to_frames ctx.env in let num_frames = List.length frames in let frames = List.mapi (fun i f -> "\n# Frame " ^ string_of_int i ^ ":\n" ^ env_to_string fmt f ^ "\n") frames in "# " ^ string_of_int num_frames ^ " frame(s)\n" ^ String.concat "" frames end module PC = Contexts (* local module *) (** Pretty-printing for contexts (generic functions) *) module CfimAst = struct type ast_formatter = { r_to_string : T.RegionVarId.id -> string; type_var_id_to_string : T.TypeVarId.id -> string; type_def_id_to_string : T.TypeDefId.id -> string; adt_variant_to_string : T.TypeDefId.id -> T.VariantId.id -> string; adt_field_to_string : T.TypeDefId.id -> T.VariantId.id option -> T.FieldId.id -> string; var_id_to_string : V.VarId.id -> string; adt_field_names : T.TypeDefId.id -> T.VariantId.id option -> string list option; fun_def_id_to_string : A.FunDefId.id -> string; } let ast_to_ctx_formatter (fmt : ast_formatter) : PC.ctx_formatter = { PV.r_to_string = fmt.r_to_string; PV.type_var_id_to_string = fmt.type_var_id_to_string; PV.type_def_id_to_string = fmt.type_def_id_to_string; PV.adt_variant_to_string = fmt.adt_variant_to_string; PV.var_id_to_string = fmt.var_id_to_string; PV.adt_field_names = fmt.adt_field_names; } let ast_to_etype_formatter (fmt : ast_formatter) : PT.etype_formatter = { PT.r_to_string = PT.erased_region_to_string; PT.type_var_id_to_string = fmt.type_var_id_to_string; PT.type_def_id_to_string = fmt.type_def_id_to_string; } let ast_to_rtype_formatter (fmt : ast_formatter) : PT.rtype_formatter = { PT.r_to_string = PT.region_to_string fmt.r_to_string; PT.type_var_id_to_string = fmt.type_var_id_to_string; PT.type_def_id_to_string = fmt.type_def_id_to_string; } let type_ctx_to_adt_field_to_string_fun (ctx : T.type_def T.TypeDefId.vector) : T.TypeDefId.id -> T.VariantId.id option -> T.FieldId.id -> string = fun def_id opt_variant_id field_id -> let def = T.TypeDefId.nth ctx def_id in let fields = T.type_def_get_fields def opt_variant_id in let field = T.FieldId.nth fields field_id in field.T.field_name let eval_ctx_to_ast_formatter (ctx : C.eval_ctx) : ast_formatter = let ctx_fmt = PC.eval_ctx_to_ctx_formatter ctx in let adt_field_to_string = type_ctx_to_adt_field_to_string_fun ctx.type_context in let fun_def_id_to_string def_id = let def = A.FunDefId.nth ctx.fun_context def_id in PT.name_to_string def.name in { r_to_string = ctx_fmt.PV.r_to_string; type_var_id_to_string = ctx_fmt.PV.type_var_id_to_string; type_def_id_to_string = ctx_fmt.PV.type_def_id_to_string; adt_variant_to_string = ctx_fmt.PV.adt_variant_to_string; var_id_to_string = ctx_fmt.PV.var_id_to_string; adt_field_names = ctx_fmt.PV.adt_field_names; adt_field_to_string; fun_def_id_to_string; } let rec projection_to_string (fmt : ast_formatter) (inside : string) (p : E.projection) : string = match p with | [] -> inside | pe :: p' -> ( let s = projection_to_string fmt inside p' in match pe with | E.Deref -> "*(" ^ s ^ ")" | E.DerefBox -> "deref_box(" ^ s ^ ")" | E.Field (E.ProjTuple _, fid) -> "(" ^ s ^ ")." ^ T.FieldId.to_string fid | E.Field (E.ProjAdt (adt_id, opt_variant_id), fid) -> ( let field_name = fmt.adt_field_to_string adt_id opt_variant_id fid in match opt_variant_id with | None -> "(" ^ s ^ ")." ^ field_name | Some variant_id -> let variant_name = fmt.adt_variant_to_string adt_id variant_id in "(" ^ s ^ " as " ^ variant_name ^ ")." ^ field_name)) let place_to_string (fmt : ast_formatter) (p : E.place) : string = let var = fmt.var_id_to_string p.E.var_id in projection_to_string fmt var p.E.projection let unop_to_string (unop : E.unop) : string = match unop with E.Not -> "¬" | E.Neg -> "-" let binop_to_string (binop : E.binop) : string = match binop with | E.BitXor -> "^" | E.BitAnd -> "&" | E.BitOr -> "|" | E.Eq -> "==" | E.Lt -> "<" | E.Le -> "<=" | E.Ne -> "!=" | E.Ge -> ">=" | E.Gt -> ">" | E.Div -> "/" | E.Rem -> "%" | E.Add -> "+" | E.Sub -> "-" | E.Mul -> "*" | E.Shl -> "<<" | E.Shr -> ">>" let operand_constant_value_to_string (fmt : ast_formatter) (cv : E.operand_constant_value) : string = match cv with | E.ConstantValue cv -> PV.constant_value_to_string cv | E.ConstantAdt def_id -> fmt.type_def_id_to_string def_id | E.Unit -> "()" let operand_to_string (fmt : ast_formatter) (op : E.operand) : string = match op with | E.Copy p -> "copy " ^ place_to_string fmt p | E.Move p -> "move " ^ place_to_string fmt p | E.Constant (_ty, cv) -> operand_constant_value_to_string fmt cv let rvalue_to_string (fmt : ast_formatter) (rv : E.rvalue) : string = match rv with | E.Use op -> operand_to_string fmt op | E.Ref (p, bk) -> ( let p = place_to_string fmt p in match bk with | E.Shared -> "&" ^ p | E.Mut -> "&mut " ^ p | E.TwoPhaseMut -> "&two-phase " ^ p) | E.UnaryOp (unop, op) -> unop_to_string unop ^ " " ^ operand_to_string fmt op | E.BinaryOp (binop, op1, op2) -> operand_to_string fmt op1 ^ " " ^ binop_to_string binop ^ " " ^ operand_to_string fmt op2 | E.Discriminant p -> "discriminant(" ^ place_to_string fmt p ^ ")" | E.Aggregate (akind, ops) -> ( let ops = List.map (operand_to_string fmt) ops in match akind with | E.AggregatedTuple -> "(" ^ String.concat ", " ops ^ ")" | E.AggregatedAdt (def_id, opt_variant_id, _regions, _types) -> let adt_name = fmt.type_def_id_to_string def_id in let variant_name = match opt_variant_id with | None -> adt_name | Some variant_id -> adt_name ^ "::" ^ fmt.adt_variant_to_string def_id variant_id in let fields = match fmt.adt_field_names def_id opt_variant_id with | None -> "(" ^ String.concat ", " ops ^ ")" | Some field_names -> let fields = List.combine field_names ops in let fields = List.map (fun (field, value) -> field ^ " = " ^ value ^ ";") fields in let fields = String.concat " " fields in "{ " ^ fields ^ " }" in variant_name ^ " " ^ fields) let statement_to_string (fmt : ast_formatter) (st : A.statement) : string = match st with | A.Assign (p, rv) -> place_to_string fmt p ^ " := " ^ rvalue_to_string fmt rv | A.FakeRead p -> "fake_read " ^ place_to_string fmt p | A.SetDiscriminant (p, variant_id) -> (* TODO: improve this to lookup the variant name by using the def id *) "set_discriminant(" ^ place_to_string fmt p ^ ", " ^ T.VariantId.to_string variant_id ^ ")" | A.Drop p -> "drop(" ^ place_to_string fmt p ^ ")" | A.Assert a -> let cond = operand_to_string fmt a.A.cond in if a.A.expected then "assert(" ^ cond ^ ")" else "assert(¬" ^ cond ^ ")" | A.Call call -> let ty_fmt = ast_to_etype_formatter fmt in let params = if List.length call.A.type_params > 0 then "<" ^ String.concat "," (List.map (PT.ty_to_string ty_fmt) call.A.type_params) ^ ">" else "" in let args = List.map (operand_to_string fmt) call.A.args in let args = "(" ^ String.concat ", " args ^ ")" in let name_params = match call.A.func with | A.Local fid -> fmt.fun_def_id_to_string fid ^ params | A.Assumed fid -> ( match fid with | A.BoxNew -> "alloc::boxed::Box" ^ params ^ "::new" | A.BoxDeref -> "core::ops::deref::Deref::deref" | A.BoxDerefMut -> "core::ops::deref::DerefMut" ^ params ^ "::deref_mut" | A.BoxFree -> "alloc::alloc::box_free" ^ params) in name_params ^ args | A.Panic -> "panic" | A.Return -> "return" | A.Break i -> "break " ^ string_of_int i | A.Continue i -> "continue " ^ string_of_int i | A.Nop -> "nop" let rec expression_to_string (fmt : ast_formatter) (indent : string) (indent_incr : string) (e : A.expression) : string = match e with | A.Statement st -> indent ^ statement_to_string fmt st ^ ";" | A.Sequence (e1, e2) -> expression_to_string fmt indent indent_incr e1 ^ "\n" ^ expression_to_string fmt indent indent_incr e2 | A.Switch (op, tgts) -> ( let op = operand_to_string fmt op in match tgts with | A.If (true_e, false_e) -> let inner_indent = indent ^ indent_incr in let inner_to_string = expression_to_string fmt inner_indent indent_incr in let true_e = inner_to_string true_e in let false_e = inner_to_string false_e in indent ^ "if (" ^ op ^ ") {\n" ^ true_e ^ "\n" ^ indent ^ "}\n" ^ indent ^ "else {\n" ^ false_e ^ "\n" ^ indent ^ "}" | A.SwitchInt (_ty, branches, otherwise) -> let indent1 = indent ^ indent_incr in let indent2 = indent1 ^ indent_incr in let inner_to_string2 = expression_to_string fmt indent2 indent_incr in let branches = List.map (fun (sv, be) -> indent1 ^ PV.scalar_value_to_string sv ^ " => {\n" ^ inner_to_string2 be ^ "\n" ^ indent1 ^ "}") branches in let branches = String.concat "\n" branches in let branches = branches ^ "\n" ^ indent1 ^ "_ => {\n" ^ inner_to_string2 otherwise ^ "\n" ^ indent1 ^ "}" in indent ^ "switch (" ^ op ^ ") {\n" ^ branches ^ "\n" ^ indent ^ "}") | A.Loop loop_e -> indent ^ "loop {\n" ^ expression_to_string fmt (indent ^ indent_incr) indent_incr loop_e ^ "\n" ^ indent ^ "}" let fun_def_to_string (fmt : ast_formatter) (indent : string) (indent_incr : string) (def : A.fun_def) : string = let rty_fmt = ast_to_rtype_formatter fmt in let rty_to_string = PT.rty_to_string rty_fmt in let ety_fmt = ast_to_etype_formatter fmt in let ety_to_string = PT.ety_to_string ety_fmt in let sg = def.signature in (* Function name *) let name = PT.name_to_string def.A.name in (* Region/type parameters *) let regions = T.RegionVarId.vector_to_list sg.region_params in let types = T.TypeVarId.vector_to_list sg.type_params in let params = if List.length regions + List.length types = 0 then "" else let regions = List.map PT.region_var_to_string regions in let types = List.map PT.type_var_to_string types in "<" ^ String.concat "," (List.append regions types) ^ ">" in (* Arguments *) let inputs = V.VarId.vector_to_list def.locals in let ret_var, inputs = match inputs with | [] -> failwith "Inconsistent signature" | ret_var :: inputs -> (ret_var, inputs) in let inputs, _aux_locals = Utilities.list_split_at inputs def.arg_count in let args = List.combine inputs (V.VarId.vector_to_list sg.inputs) in let args = List.map (fun (var, rty) -> PV.var_to_string var ^ " : " ^ rty_to_string rty) args in let args = String.concat ", " args in (* Return type *) let ret_ty = sg.output in let ret_ty = if T.ty_is_unit ret_ty then "" else " -> " ^ rty_to_string ret_ty in (* All the locals (with erased regions) *) let locals = List.map (fun var -> indent ^ indent_incr ^ PV.var_to_string var ^ " : " ^ ety_to_string var.var_ty ^ ";") (V.VarId.vector_to_list def.locals) in let locals = String.concat "\n" locals in (* Body *) let body = expression_to_string fmt (indent ^ indent_incr) indent_incr def.body in (* Put everything together *) indent ^ "fn " ^ name ^ params ^ "(" ^ args ^ ")" ^ ret_ty ^ " {\n" ^ locals ^ "\n\n" ^ body ^ "\n" ^ indent ^ "}" end module PA = CfimAst (* local module *) (** Pretty-printing for ASTs (functions based on a definition context) *) module Module = struct (** This function pretty-prints a type definition by using a definition context *) let type_def_to_string (type_context : T.type_def T.TypeDefId.vector) (def : T.type_def) : string = let type_def_id_to_string (id : T.TypeDefId.id) : string = let def = T.TypeDefId.nth type_context id in PT.name_to_string def.name in PT.type_def_to_string type_def_id_to_string def (** Generate an [ast_formatter] by using a definition context in combination with the variables local to a function's definition *) let def_ctx_to_ast_formatter (type_context : T.type_def T.TypeDefId.vector) (fun_context : A.fun_def A.FunDefId.vector) (def : A.fun_def) : PA.ast_formatter = let r_to_string vid = let var = T.RegionVarId.nth def.signature.region_params vid in PT.region_var_to_string var in let type_var_id_to_string vid = let var = T.TypeVarId.nth def.signature.type_params vid in PT.type_var_to_string var in let type_def_id_to_string def_id = let def = T.TypeDefId.nth type_context def_id in PT.name_to_string def.name in let fun_def_id_to_string def_id = let def = A.FunDefId.nth fun_context def_id in PT.name_to_string def.name in let var_id_to_string vid = let var = V.VarId.nth def.locals vid in PV.var_to_string var in let adt_variant_to_string = PC.type_ctx_to_adt_variant_to_string_fun type_context in let adt_field_to_string = PA.type_ctx_to_adt_field_to_string_fun type_context in let adt_field_names = PC.type_ctx_to_adt_field_names_fun type_context in { r_to_string; type_var_id_to_string; type_def_id_to_string; adt_variant_to_string; adt_field_to_string; var_id_to_string; adt_field_names; fun_def_id_to_string; } (** This function pretty-prints a function definition by using a definition context *) let fun_def_to_string (type_context : T.type_def T.TypeDefId.vector) (fun_context : A.fun_def A.FunDefId.vector) (def : A.fun_def) : string = let fmt = def_ctx_to_ast_formatter type_context fun_context def in PA.fun_def_to_string fmt "" " " def let module_to_string (m : M.cfim_module) : string = (* The types *) let type_defs = List.map (type_def_to_string m.M.types) (T.TypeDefId.vector_to_list m.M.types) in (* The functions *) let fun_defs = List.map (fun_def_to_string m.M.types m.M.functions) (A.FunDefId.vector_to_list m.M.functions) in (* Put everything together *) let all_defs = List.append type_defs fun_defs in String.concat "\n\n" all_defs end (** Pretty-printing for ASTs (functions based on an evaluation context) *) module EvalCtxCfimAst = struct let ety_to_string (ctx : C.eval_ctx) (t : T.ety) : string = let fmt = PC.eval_ctx_to_ctx_formatter ctx in let fmt = PC.ctx_to_etype_formatter fmt in PT.ety_to_string fmt t let rty_to_string (ctx : C.eval_ctx) (t : T.rty) : string = let fmt = PC.eval_ctx_to_ctx_formatter ctx in let fmt = PC.ctx_to_rtype_formatter fmt in PT.rty_to_string fmt t let typed_value_to_string (ctx : C.eval_ctx) (v : V.typed_value) : string = let fmt = PC.eval_ctx_to_ctx_formatter ctx in PV.typed_value_to_string fmt v let operand_to_string (ctx : C.eval_ctx) (op : E.operand) : string = let fmt = PA.eval_ctx_to_ast_formatter ctx in PA.operand_to_string fmt op let statement_to_string (ctx : C.eval_ctx) (s : A.statement) : string = let fmt = PA.eval_ctx_to_ast_formatter ctx in PA.statement_to_string fmt s let expression_to_string (ctx : C.eval_ctx) (indent : string) (indent_incr : string) (e : A.expression) : string = let fmt = PA.eval_ctx_to_ast_formatter ctx in PA.expression_to_string fmt indent indent_incr e end