module T = Types module V = Values module E = Expressions module C = Contexts module Subst = Substitute module L = Logging open TypesUtils open InterpreterUtils open InterpreterBorrowsCore (** A symbolic expansion *) type symbolic_expansion = | SeConcrete of V.constant_value | SeAdt of (T.VariantId.id option * V.symbolic_value list) | SeMutRef of V.BorrowId.id * V.symbolic_value | SeSharedRef of V.BorrowId.set_t * V.symbolic_value (** Auxiliary function. Apply a proj_borrows on a shared borrow. Note that when projecting over shared values, we generate [abstract_shared_borrows], not avalues. *) let rec apply_proj_borrows_on_shared_borrow (ctx : C.eval_ctx) (fresh_reborrow : V.BorrowId.id -> V.BorrowId.id) (regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) : V.abstract_shared_borrows = (* Sanity check - TODO: move this elsewhere (here we perform the check at every * recursive call which is a bit overkill...) *) let ety = Subst.erase_regions ty in assert (ety = v.V.ty); (* Project - if there are no regions from the abstraction in the type, return `_` *) if not (ty_has_regions_in_set regions ty) then [] else match (v.V.value, ty) with | V.Concrete _, (T.Bool | T.Char | T.Integer _ | T.Str) -> [] | V.Adt adt, T.Adt (id, region_params, tys) -> (* Retrieve the types of the fields *) let field_types = Subst.ctx_adt_value_get_instantiated_field_rtypes ctx adt id region_params tys in (* Project over the field values *) let fields_types = List.combine adt.V.field_values field_types in let proj_fields = List.map (fun (fv, fty) -> apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions fv fty) fields_types in List.concat proj_fields | V.Bottom, _ -> failwith "Unreachable" | V.Borrow bc, T.Ref (r, ref_ty, kind) -> (* Retrieve the bid of the borrow and the asb of the projected borrowed value *) let bid, asb = (* Not in the set: dive *) match (bc, kind) with | V.MutBorrow (bid, bv), T.Mut -> (* Apply the projection on the borrowed value *) let asb = apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions bv ref_ty in (bid, asb) | V.SharedBorrow bid, T.Shared -> (* Lookup the shared value *) let ek = ek_all in let sv = lookup_loan ek bid ctx in let asb = match sv with | _, Concrete (V.SharedLoan (_, sv)) | _, Abstract (V.ASharedLoan (_, sv, _)) -> apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions sv ref_ty | _ -> failwith "Unexpected" in (bid, asb) | V.InactivatedMutBorrow _, _ -> failwith "Can't apply a proj_borrow over an inactivated mutable borrow" | _ -> failwith "Unreachable" in let asb = (* Check if the region is in the set of projected regions (note that * we never project over static regions) *) if region_in_set r regions then let bid' = fresh_reborrow bid in V.AsbBorrow bid' :: asb else asb in asb | V.Loan _, _ -> failwith "Unreachable" | V.Symbolic s, _ -> (* Check that the projection doesn't contain ended regions *) assert ( not (projections_intersect s.V.sv_ty ctx.ended_regions ty regions)); [ V.AsbProjReborrows (s, ty) ] | _ -> failwith "Unreachable" (** Apply (and reduce) a projector over borrows to a value. - [regions]: the regions we project - [v]: the value over which we project - [ty]: the projection type (is used to map borrows to regions, or to interpret the borrows as belonging to some regions...). Remember that `v` doesn't contain region information. For instance, if we have: `v <: ty` where: - `v = mut_borrow l ...` - `ty = Ref (r, ...)` then we interpret the borrow `l` as belonging to region `r` Also, when applying projections on shared values, we need to apply reborrows. This is a bit annoying because, with the way we compute the projection on borrows, we can't update the context immediately. Instead, we remember the list of borrows we have to insert in the context *afterwards*. [check_symbolic_no_ended] controls whether we check or not whether symbolic values don't contain already ended regions. This check is activated when applying projectors upon calling a function (because we need to check that function arguments don't contain ⊥), but deactivated when expanding symbolic values: ``` fn f<'a,'b>(x : &'a mut u32, y : &'b mut u32) -> (&'a mut u32, &'b mut u32); let p = f(&mut x, &mut y); // p -> @s0 assert(x == ...); // end 'a let z = p.1; // HERE: the symbolic expansion of @s0 contains ended regions ``` *) let rec apply_proj_borrows (check_symbolic_no_ended : bool) (ctx : C.eval_ctx) (fresh_reborrow : V.BorrowId.id -> V.BorrowId.id) (regions : T.RegionId.set_t) (ancestors_regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) : V.typed_avalue = (* Sanity check - TODO: move this elsewhere (here we perform the check at every * recursive call which is a bit overkill...) *) let ety = Substitute.erase_regions ty in assert (ety = v.V.ty); (* Project - if there are no regions from the abstraction in the type, return `_` *) if not (ty_has_regions_in_set regions ty) then { V.value = V.AIgnored; ty } else let value : V.avalue = match (v.V.value, ty) with | V.Concrete cv, (T.Bool | T.Char | T.Integer _ | T.Str) -> V.AConcrete cv | V.Adt adt, T.Adt (id, region_params, tys) -> (* Retrieve the types of the fields *) let field_types = Subst.ctx_adt_value_get_instantiated_field_rtypes ctx adt id region_params tys in (* Project over the field values *) let fields_types = List.combine adt.V.field_values field_types in let proj_fields = List.map (fun (fv, fty) -> apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow regions ancestors_regions fv fty) fields_types in V.AAdt { V.variant_id = adt.V.variant_id; field_values = proj_fields } | V.Bottom, _ -> failwith "Unreachable" | V.Borrow bc, T.Ref (r, ref_ty, kind) -> if (* Check if the region is in the set of projected regions (note that * we never project over static regions) *) region_in_set r regions then (* In the set *) let bc = match (bc, kind) with | V.MutBorrow (bid, bv), T.Mut -> (* Apply the projection on the borrowed value *) let bv = apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow regions ancestors_regions bv ref_ty in V.AMutBorrow (bid, bv) | V.SharedBorrow bid, T.Shared -> V.ASharedBorrow bid | V.InactivatedMutBorrow _, _ -> failwith "Can't apply a proj_borrow over an inactivated mutable \ borrow" | _ -> failwith "Unreachable" in V.ABorrow bc else (* Not in the set: ignore *) let bc = match (bc, kind) with | V.MutBorrow (bid, bv), T.Mut -> (* Apply the projection on the borrowed value *) let bv = apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow regions ancestors_regions bv ref_ty in (* If the borrow id is in the ancestor's regions, we still need * to remember it *) let opt_bid = if region_in_set r ancestors_regions then Some bid else None in (* Return *) V.AIgnoredMutBorrow (opt_bid, bv) | V.SharedBorrow bid, T.Shared -> (* Lookup the shared value *) let ek = ek_all in let sv = lookup_loan ek bid ctx in let asb = match sv with | _, Concrete (V.SharedLoan (_, sv)) | _, Abstract (V.ASharedLoan (_, sv, _)) -> apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions sv ref_ty | _ -> failwith "Unexpected" in V.AProjSharedBorrow asb | V.InactivatedMutBorrow _, _ -> failwith "Can't apply a proj_borrow over an inactivated mutable \ borrow" | _ -> failwith "Unreachable" in V.ABorrow bc | V.Loan _, _ -> failwith "Unreachable" | V.Symbolic s, _ -> (* Check that the projection doesn't contain already ended regions, * if necessary *) if check_symbolic_no_ended then ( let ty1 = s.V.sv_ty in let rset1 = ctx.ended_regions in let ty2 = ty in let rset2 = regions in log#ldebug (lazy ("projections_intersect:" ^ "\n- ty1: " ^ rty_to_string ctx ty1 ^ "\n- rset1: " ^ T.RegionId.set_to_string rset1 ^ "\n- ty2: " ^ rty_to_string ctx ty2 ^ "\n- rset2: " ^ T.RegionId.set_to_string rset2 ^ "\n")); assert (not (projections_intersect ty1 rset1 ty2 rset2))); V.ASymbolic (V.AProjBorrows (s, ty)) | _ -> log#lerror (lazy ("apply_proj_borrows: unexpected inputs:\n- input value: " ^ typed_value_to_string ctx v ^ "\n- proj rty: " ^ rty_to_string ctx ty)); failwith "Unreachable" in { V.value; V.ty } (** Convert a symbolic expansion *which is not a borrow* to a value *) let symbolic_expansion_non_borrow_to_value (sv : V.symbolic_value) (see : symbolic_expansion) : V.typed_value = let ty = Subst.erase_regions sv.V.sv_ty in let value = match see with | SeConcrete cv -> V.Concrete cv | SeAdt (variant_id, field_values) -> let field_values = List.map mk_typed_value_from_symbolic_value field_values in V.Adt { V.variant_id; V.field_values } | SeMutRef (_, _) | SeSharedRef (_, _) -> failwith "Unexpected symbolic reference expansion" in { V.value; V.ty } (** Convert a symbolic expansion to a value. If the expansion is a mutable reference expansion, it converts it to a borrow. This function is meant to be used when reducing projectors over borrows, during a symbolic expansion. *) let symbolic_expansion_non_shared_borrow_to_value (sv : V.symbolic_value) (see : symbolic_expansion) : V.typed_value = match see with | SeMutRef (bid, bv) -> let ty = Subst.erase_regions sv.V.sv_ty in let bv = mk_typed_value_from_symbolic_value bv in let value = V.Borrow (V.MutBorrow (bid, bv)) in { V.value; ty } | SeSharedRef (_, _) -> failwith "Unexpected symbolic shared reference expansion" | _ -> symbolic_expansion_non_borrow_to_value sv see (** Apply (and reduce) a projector over loans to a value. TODO: detailed comments. See [apply_proj_borrows] *) let apply_proj_loans_on_symbolic_expansion (regions : T.RegionId.set_t) (see : symbolic_expansion) (original_sv_ty : T.rty) : V.typed_avalue = (* Sanity check: if we have a proj_loans over a symbolic value, it should * contain regions which we will project *) assert (ty_has_regions_in_set regions original_sv_ty); (* Match *) let (value, ty) : V.avalue * T.rty = match (see, original_sv_ty) with | SeConcrete _, (T.Bool | T.Char | T.Integer _ | T.Str) -> (V.AIgnored, original_sv_ty) | SeAdt (variant_id, field_values), T.Adt (_id, _region_params, _tys) -> (* Project over the field values *) let field_values = List.map (mk_aproj_loans_value_from_symbolic_value regions) field_values in (V.AAdt { V.variant_id; field_values }, original_sv_ty) | SeMutRef (bid, spc), T.Ref (r, ref_ty, T.Mut) -> (* Sanity check *) assert (spc.V.sv_ty = ref_ty); (* Apply the projector to the borrowed value *) let child_av = mk_aproj_loans_value_from_symbolic_value regions spc in (* Check if the region is in the set of projected regions (note that * we never project over static regions) *) if region_in_set r regions then (* In the set: keep *) (V.ALoan (V.AMutLoan (bid, child_av)), ref_ty) else (* Not in the set: ignore *) (V.ALoan (V.AIgnoredMutLoan (bid, child_av)), ref_ty) | SeSharedRef (bids, spc), T.Ref (r, ref_ty, T.Shared) -> (* Sanity check *) assert (spc.V.sv_ty = ref_ty); (* Apply the projector to the borrowed value *) let child_av = mk_aproj_loans_value_from_symbolic_value regions spc in (* Check if the region is in the set of projected regions (note that * we never project over static regions) *) if region_in_set r regions then (* In the set: keep *) let shared_value = mk_typed_value_from_symbolic_value spc in (V.ALoan (V.ASharedLoan (bids, shared_value, child_av)), ref_ty) else (* Not in the set: ignore *) (V.ALoan (V.AIgnoredSharedLoan child_av), ref_ty) | _ -> failwith "Unreachable" in { V.value; V.ty } (** Auxiliary function. See [give_back_value]. Apply reborrows to a context. The [reborrows] input is a list of pairs (shared loan id, id to insert in the shared loan). This function is used when applying projectors on shared borrows: when doing so, we might need to reborrow subvalues from the shared value. For instance: ``` fn f<'a,'b,'c>(x : &'a 'b 'c u32) ``` When introducing the abstractions for 'a, 'b and 'c, we apply a projector on some value `shared_borrow l : &'a &'b &'c u32`. In the 'a abstraction, this shared borrow gets projected. However, when reducing the projectors for the 'b and 'c abstractions, we need to make sure that the borrows living in regions 'b and 'c live as long as those regions. This is done by looking up the shared value and applying reborrows on the borrows we find there (note that those reborrows apply on shared borrows - easy - and mutable borrows - in this case, we reborrow the whole borrow: `mut_borrow ... ~~> shared_loan {...} (mut_borrow ...)`). *) let apply_reborrows (reborrows : (V.BorrowId.id * V.BorrowId.id) list) (ctx : C.eval_ctx) : C.eval_ctx = (* This is a bit brutal, but whenever we insert a reborrow, we remove * it from the list. This allows us to check that all the reborrows were * applied before returning. * We might reimplement that in a more efficient manner by using maps. *) let reborrows = ref reborrows in (* Check if a value is a mutable borrow, and return its identifier if it is the case *) let get_borrow_in_mut_borrow (v : V.typed_value) : V.BorrowId.id option = match v.V.value with | V.Borrow lc -> ( match lc with | V.SharedBorrow _ | V.InactivatedMutBorrow _ -> None | V.MutBorrow (id, _) -> Some id) | _ -> None in (* Add the proper reborrows to a set of borrow ids (for a shared loan) *) let insert_reborrows bids = (* Find the reborrows to apply *) let insert, reborrows' = List.partition (fun (bid, _) -> V.BorrowId.Set.mem bid bids) !reborrows in reborrows := reborrows'; let insert = List.map snd insert in (* Insert the borrows *) List.fold_left (fun bids bid -> V.BorrowId.Set.add bid bids) bids insert in (* Get the list of reborrows for a given borrow id *) let get_reborrows_for_bid bid = (* Find the reborrows to apply *) let insert, reborrows' = List.partition (fun (bid', _) -> bid' = bid) !reborrows in reborrows := reborrows'; List.map snd insert in let borrows_to_set bids = List.fold_left (fun bids bid -> V.BorrowId.Set.add bid bids) V.BorrowId.Set.empty bids in (* Insert reborrows for a given borrow id into a given set of borrows *) let insert_reborrows_for_bid bids bid = (* Find the reborrows to apply *) let insert = get_reborrows_for_bid bid in (* Insert the borrows *) List.fold_left (fun bids bid -> V.BorrowId.Set.add bid bids) bids insert in let obj = object inherit [_] C.map_eval_ctx as super method! visit_typed_value env v = match v.V.value with | V.Borrow (V.MutBorrow (bid, bv)) -> let insert = get_reborrows_for_bid bid in let nbc = super#visit_MutBorrow env bid bv in let nbc = { v with V.value = V.Borrow nbc } in if insert = [] then (* No reborrows: do nothing special *) nbc else (* There are reborrows: insert a shared loan *) let insert = borrows_to_set insert in let value = V.Loan (V.SharedLoan (insert, nbc)) in let ty = v.V.ty in { V.value; ty } | _ -> super#visit_typed_value env v (** We may need to reborrow mutable borrows. Note that this doesn't happen for aborrows *) method! visit_loan_content env lc = match lc with | V.SharedLoan (bids, sv) -> (* Insert the reborrows *) let bids = insert_reborrows bids in (* Check if the contained value is a mutable borrow, in which * case we might need to reborrow it by adding more borrow ids * to the current set of borrows - by doing this small * manipulation here, we accumulate the borrow ids in the same * shared loan, right above the mutable borrow, and avoid * stacking shared loans (note that doing this is not a problem * from a soundness point of view, but it is a bit ugly...) *) let bids = match get_borrow_in_mut_borrow sv with | None -> bids | Some bid -> insert_reborrows_for_bid bids bid in (* Update and explore *) super#visit_SharedLoan env bids sv | V.MutLoan bid -> (* Nothing special to do *) super#visit_MutLoan env bid (** We reimplement [visit_loan_content] (rather than one of the sub- functions) on purpose: exhaustive matches are good for maintenance *) method! visit_aloan_content env lc = match lc with | V.ASharedLoan (bids, sv, av) -> (* Insert the reborrows *) let bids = insert_reborrows bids in (* Similarly to the non-abstraction case: check if the shared * value is a mutable borrow, to eventually insert more reborrows *) (* Update and explore *) let bids = match get_borrow_in_mut_borrow sv with | None -> bids | Some bid -> insert_reborrows_for_bid bids bid in (* Update and explore *) super#visit_ASharedLoan env bids sv av | V.AIgnoredSharedLoan _ | V.AMutLoan (_, _) | V.AEndedMutLoan { given_back = _; child = _ } | V.AEndedSharedLoan (_, _) | V.AIgnoredMutLoan (_, _) | V.AEndedIgnoredMutLoan { given_back = _; child = _ } -> (* Nothing particular to do *) super#visit_aloan_content env lc end in (* Visit *) let ctx = obj#visit_eval_ctx () ctx in (* Check that there are no reborrows remaining *) assert (!reborrows = []); (* Return *) ctx (** Auxiliary function to prepare reborrowing operations (used when applying projectors). Returns two functions: - a function to generate fresh re-borrow ids, and register the reborrows - a function to apply the reborrows in a context Those functions are of course stateful. *) let prepare_reborrows (config : C.config) (allow_reborrows : bool) : (V.BorrowId.id -> V.BorrowId.id) * (C.eval_ctx -> C.eval_ctx) = let reborrows : (V.BorrowId.id * V.BorrowId.id) list ref = ref [] in (* The function to generate and register fresh reborrows *) let fresh_reborrow (bid : V.BorrowId.id) : V.BorrowId.id = if allow_reborrows then ( let bid' = C.fresh_borrow_id () in reborrows := (bid, bid') :: !reborrows; bid') else failwith "Unexpected reborrow" in (* The function to apply the reborrows in a context *) let apply_registered_reborrows (ctx : C.eval_ctx) : C.eval_ctx = match config.C.mode with | C.ConcreteMode -> assert (!reborrows = []); ctx | C.SymbolicMode -> (* Apply the reborrows *) apply_reborrows !reborrows ctx in (fresh_reborrow, apply_registered_reborrows) let apply_proj_borrows_on_input_value (config : C.config) (ctx : C.eval_ctx) (regions : T.RegionId.set_t) (ancestors_regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) : C.eval_ctx * V.typed_avalue = let check_symbolic_no_ended = true in let allow_reborrows = true in (* Prepare the reborrows *) let fresh_reborrow, apply_registered_reborrows = prepare_reborrows config allow_reborrows in (* Apply the projector *) let av = apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow regions ancestors_regions v ty in (* Apply the reborrows *) let ctx = apply_registered_reborrows ctx in (* Return *) (ctx, av)