module T = Types module V = Values module E = Expressions module C = Contexts module Subst = Substitute module L = Logging module S = Synthesis open TypesUtils open ValuesUtils open InterpreterUtils open InterpreterBorrowsCore open InterpreterBorrows open InterpreterExpansion (** Paths *) (** When we fail reading from or writing to a path, it might be because we need to update the environment by ending borrows, expanding symbolic values, etc. The following type is used to convey this information. TODO: compare with borrow_lres? *) type path_fail_kind = | FailSharedLoan of V.BorrowId.Set.t (** Failure because we couldn't go inside a shared loan *) | FailMutLoan of V.BorrowId.id (** Failure because we couldn't go inside a mutable loan *) | FailInactivatedMutBorrow of V.BorrowId.id (** Failure because we couldn't go inside an inactivated mutable borrow (which should get activated) *) | FailSymbolic of (E.projection_elem * V.symbolic_proj_comp) (** Failure because we need to enter a symbolic value (and thus need to expand it) *) (* TODO: Remove the parentheses *) | FailBottom of (int * E.projection_elem * T.ety) (** Failure because we need to enter an any value - we can expand Bottom values if they are left values. We return the number of elements which were remaining in the path when we reached the error - this allows to properly update the Bottom value, if needs be. *) | FailBorrow of V.borrow_content (** We got stuck because we couldn't enter a borrow *) (** Result of evaluating a path (reading from a path/writing to a path) Note that when we fail, we return information used to update the environment, as well as the *) type 'a path_access_result = ('a, path_fail_kind) result (** The result of reading from/writing to a place *) type updated_read_value = { read : V.typed_value; updated : V.typed_value } type projection_access = { enter_shared_loans : bool; enter_mut_borrows : bool; lookup_shared_borrows : bool; } (** Generic function to access (read/write) the value at the end of a projection. We return the (eventually) updated value, the value we read at the end of the place and the (eventually) updated environment. TODO: use exceptions? *) let rec access_projection (access : projection_access) (ctx : C.eval_ctx) (* Function to (eventually) update the value we find *) (update : V.typed_value -> V.typed_value) (p : E.projection) (v : V.typed_value) : (C.eval_ctx * updated_read_value) path_access_result = (* For looking up/updating shared loans *) let ek : exploration_kind = { enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true } in match p with | [] -> let nv = update v in (* Type checking *) if nv.ty <> v.ty then ( L.log#lerror (lazy ("Not the same type:\n- nv.ty: " ^ T.show_ety nv.ty ^ "\n- v.ty: " ^ T.show_ety v.ty)); failwith "Assertion failed: new value doesn't have the same type as its \ destination"); Ok (ctx, { read = v; updated = nv }) | pe :: p' -> ( (* Match on the projection element and the value *) match (pe, v.V.value, v.V.ty) with (* Field projection - ADTs *) | ( Field (ProjAdt (def_id, opt_variant_id), field_id), V.Adt adt, T.Adt (T.AdtId def_id', _, _) ) -> ( assert (def_id = def_id'); (* Check that the projection is consistent with the current value *) (match (opt_variant_id, adt.variant_id) with | None, None -> () | Some vid, Some vid' -> if vid <> vid' then failwith "Unreachable" | _ -> failwith "Unreachable"); (* Actually project *) let fv = T.FieldId.nth adt.field_values field_id in match access_projection access ctx update p' fv with | Error err -> Error err | Ok (ctx, res) -> (* Update the field value *) let nvalues = T.FieldId.update_nth adt.field_values field_id res.updated in let nadt = V.Adt { adt with V.field_values = nvalues } in let updated = { v with value = nadt } in Ok (ctx, { res with updated })) (* Tuples *) | Field (ProjTuple arity, field_id), V.Adt adt, T.Adt (T.Tuple, _, _) -> ( assert (arity = List.length adt.field_values); let fv = T.FieldId.nth adt.field_values field_id in (* Project *) match access_projection access ctx update p' fv with | Error err -> Error err | Ok (ctx, res) -> (* Update the field value *) let nvalues = T.FieldId.update_nth adt.field_values field_id res.updated in let ntuple = V.Adt { adt with field_values = nvalues } in let updated = { v with value = ntuple } in Ok (ctx, { res with updated }) (* If we reach Bottom, it may mean we need to expand an uninitialized * enumeration value *)) | Field (ProjAdt (_, _), _), V.Bottom, _ -> Error (FailBottom (1 + List.length p', pe, v.ty)) | Field (ProjTuple _, _), V.Bottom, _ -> Error (FailBottom (1 + List.length p', pe, v.ty)) (* Symbolic value: needs to be expanded *) | _, Symbolic sp, _ -> (* Expand the symbolic value *) Error (FailSymbolic (pe, sp)) (* Box dereferencement *) | ( DerefBox, Adt { variant_id = None; field_values = [ bv ] }, T.Adt (T.Assumed T.Box, _, _) ) -> ( (* We allow moving inside of boxes. In practice, this kind of * manipulations should happen only inside unsage code, so * it shouldn't happen due to user code, and we leverage it * when implementing box dereferencement for the concrete * interpreter *) match access_projection access ctx update p' bv with | Error err -> Error err | Ok (ctx, res) -> let nv = { v with value = V.Adt { variant_id = None; field_values = [ res.updated ] }; } in Ok (ctx, { res with updated = nv })) (* Borrows *) | Deref, V.Borrow bc, _ -> ( match bc with | V.SharedBorrow bid -> (* Lookup the loan content, and explore from there *) if access.lookup_shared_borrows then match lookup_loan ek bid ctx with | _, Concrete (V.MutLoan _) -> failwith "Expected a shared loan" | _, Concrete (V.SharedLoan (bids, sv)) -> ( (* Explore the shared value *) match access_projection access ctx update p' sv with | Error err -> Error err | Ok (ctx, res) -> (* Update the shared loan with the new value returned by [access_projection] *) let ctx = update_loan ek bid (V.SharedLoan (bids, res.updated)) ctx in (* Return - note that we don't need to update the borrow itself *) Ok (ctx, { res with updated = v })) | ( _, Abstract ( V.AMutLoan (_, _) | V.AEndedMutLoan { given_back = _; child = _ } | V.AEndedSharedLoan (_, _) | V.AIgnoredMutLoan (_, _) | V.AEndedIgnoredMutLoan { given_back = _; child = _ } | V.AIgnoredSharedLoan _ ) ) -> failwith "Expected a shared (abstraction) loan" | _, Abstract (V.ASharedLoan (bids, sv, _av)) -> ( (* Explore the shared value *) match access_projection access ctx update p' sv with | Error err -> Error err | Ok (ctx, res) -> (* Relookup the child avalue *) let av = match lookup_loan ek bid ctx with | _, Abstract (V.ASharedLoan (_, _, av)) -> av | _ -> failwith "Unexpected" in (* Update the shared loan with the new value returned by [access_projection] *) let ctx = update_aloan ek bid (V.ASharedLoan (bids, res.updated, av)) ctx in (* Return - note that we don't need to update the borrow itself *) Ok (ctx, { res with updated = v })) else Error (FailBorrow bc) | V.InactivatedMutBorrow bid -> Error (FailInactivatedMutBorrow bid) | V.MutBorrow (bid, bv) -> if access.enter_mut_borrows then match access_projection access ctx update p' bv with | Error err -> Error err | Ok (ctx, res) -> let nv = { v with value = V.Borrow (V.MutBorrow (bid, res.updated)); } in Ok (ctx, { res with updated = nv }) else Error (FailBorrow bc)) | _, V.Loan lc, _ -> ( match lc with | V.MutLoan bid -> Error (FailMutLoan bid) | V.SharedLoan (bids, sv) -> (* If we can enter shared loan, we ignore the loan. Pay attention to the fact that we need to reexplore the *whole* place (i.e, we mustn't ignore the current projection element *) if access.enter_shared_loans then match access_projection access ctx update (pe :: p') sv with | Error err -> Error err | Ok (ctx, res) -> let nv = { v with value = V.Loan (V.SharedLoan (bids, res.updated)); } in Ok (ctx, { res with updated = nv }) else Error (FailSharedLoan bids)) | (_, (V.Concrete _ | V.Adt _ | V.Bottom | V.Borrow _), _) as r -> let pe, v, ty = r in let pe = "- pe: " ^ E.show_projection_elem pe in let v = "- v:\n" ^ V.show_value v in let ty = "- ty:\n" ^ T.show_ety ty in L.log#serror ("Inconsistent projection:\n" ^ pe ^ "\n" ^ v ^ "\n" ^ ty); failwith "Inconsistent projection") (** Generic function to access (read/write) the value at a given place. We return the value we read at the place and the (eventually) updated environment, if we managed to access the place, or the precise reason why we failed. *) let access_place (access : projection_access) (* Function to (eventually) update the value we find *) (update : V.typed_value -> V.typed_value) (p : E.place) (ctx : C.eval_ctx) : (C.eval_ctx * V.typed_value) path_access_result = (* Lookup the variable's value *) let value = C.ctx_lookup_var_value ctx p.var_id in (* Apply the projection *) match access_projection access ctx update p.projection value with | Error err -> Error err | Ok (ctx, res) -> (* Update the value *) let ctx = C.ctx_update_var_value ctx p.var_id res.updated in (* Return *) Ok (ctx, res.read) type access_kind = | Read (** We can go inside borrows and loans *) | Write (** Don't enter shared borrows or shared loans *) | Move (** Don't enter borrows or loans *) let access_kind_to_projection_access (access : access_kind) : projection_access = match access with | Read -> { enter_shared_loans = true; enter_mut_borrows = true; lookup_shared_borrows = true; } | Write -> { enter_shared_loans = false; enter_mut_borrows = true; lookup_shared_borrows = false; } | Move -> { enter_shared_loans = false; enter_mut_borrows = false; lookup_shared_borrows = false; } (** Read the value at a given place *) let read_place (config : C.config) (access : access_kind) (p : E.place) (ctx : C.eval_ctx) : V.typed_value path_access_result = let access = access_kind_to_projection_access access in (* The update function is the identity *) let update v = v in match access_place access update p ctx with | Error err -> Error err | Ok (ctx1, read_value) -> (* Note that we ignore the new environment: it should be the same as the original one. *) if config.check_invariants then if ctx1 <> ctx then ( let msg = "Unexpected environment update:\nNew environment:\n" ^ C.show_env ctx1.env ^ "\n\nOld environment:\n" ^ C.show_env ctx.env in L.log#serror msg; failwith "Unexpected environment update"); Ok read_value let read_place_unwrap (config : C.config) (access : access_kind) (p : E.place) (ctx : C.eval_ctx) : V.typed_value = match read_place config access p ctx with | Error _ -> failwith "Unreachable" | Ok v -> v (** Update the value at a given place *) let write_place (_config : C.config) (access : access_kind) (p : E.place) (nv : V.typed_value) (ctx : C.eval_ctx) : C.eval_ctx path_access_result = let access = access_kind_to_projection_access access in (* The update function substitutes the value with the new value *) let update _ = nv in match access_place access update p ctx with | Error err -> Error err | Ok (ctx, _) -> (* We ignore the read value *) Ok ctx let write_place_unwrap (config : C.config) (access : access_kind) (p : E.place) (nv : V.typed_value) (ctx : C.eval_ctx) : C.eval_ctx = match write_place config access p nv ctx with | Error _ -> failwith "Unreachable" | Ok ctx -> ctx (** Compute an expanded ADT bottom value *) let compute_expanded_bottom_adt_value (tyctx : T.type_def list) (def_id : T.TypeDefId.id) (opt_variant_id : T.VariantId.id option) (regions : T.erased_region list) (types : T.ety list) : V.typed_value = (* Lookup the definition and check if it is an enumeration - it should be an enumeration if and only if the projection element is a field projection with *some* variant id. Retrieve the list of fields at the same time. *) let def = T.TypeDefId.nth tyctx def_id in assert (List.length regions = List.length def.T.region_params); (* Compute the field types *) let field_types = Subst.type_def_get_instantiated_field_etypes def opt_variant_id types in (* Initialize the expanded value *) let fields = List.map (fun ty : V.typed_value -> ({ V.value = V.Bottom; ty } : V.typed_value)) field_types in let av = V.Adt { variant_id = opt_variant_id; field_values = fields } in let ty = T.Adt (T.AdtId def_id, regions, types) in { V.value = av; V.ty } (** Compute an expanded tuple bottom value *) let compute_expanded_bottom_tuple_value (field_types : T.ety list) : V.typed_value = (* Generate the field values *) let fields = List.map (fun ty : V.typed_value -> { V.value = Bottom; ty }) field_types in let v = V.Adt { variant_id = None; field_values = fields } in let ty = T.Adt (T.Tuple, [], field_types) in { V.value = v; V.ty } (** Auxiliary helper to expand [Bottom] values. During compilation, rustc desaggregates the ADT initializations. The consequence is that the following rust code: ``` let x = Cons a b; ``` Looks like this in MIR: ``` (x as Cons).0 = a; (x as Cons).1 = b; set_discriminant(x, 0); // If `Cons` is the variant of index 0 ``` The consequence is that we may sometimes need to write fields to values which are currently [Bottom]. When doing this, we first expand the value to, say, [Cons Bottom Bottom] (note that field projection contains information about which variant we should project to, which is why we *can* set the variant index when writing one of its fields). *) let expand_bottom_value_from_projection (config : C.config) (access : access_kind) (p : E.place) (remaining_pes : int) (pe : E.projection_elem) (ty : T.ety) (ctx : C.eval_ctx) : C.eval_ctx = (* Debugging *) L.log#ldebug (lazy ("expand_bottom_value_from_projection:\n" ^ "pe: " ^ E.show_projection_elem pe ^ "\n" ^ "ty: " ^ T.show_ety ty)); (* Prepare the update: we need to take the proper prefix of the place during whose evaluation we got stuck *) let projection' = fst (Utils.list_split_at p.projection (List.length p.projection - remaining_pes)) in let p' = { p with projection = projection' } in (* Compute the expanded value. The type of the [Bottom] value should be a tuple or an ADT. Note that the projection element we got stuck at should be a field projection, and gives the variant id if the [Bottom] value is an enumeration value. Also, the expanded value should be the proper ADT variant or a tuple with the proper arity, with all the fields initialized to [Bottom] *) let nv = match (pe, ty) with (* "Regular" ADTs *) | ( Field (ProjAdt (def_id, opt_variant_id), _), T.Adt (T.AdtId def_id', regions, types) ) -> assert (def_id = def_id'); compute_expanded_bottom_adt_value ctx.type_context.type_defs def_id opt_variant_id regions types (* Tuples *) | Field (ProjTuple arity, _), T.Adt (T.Tuple, [], tys) -> assert (arity = List.length tys); (* Generate the field values *) compute_expanded_bottom_tuple_value tys | _ -> failwith ("Unreachable: " ^ E.show_projection_elem pe ^ ", " ^ T.show_ety ty) in (* Update the context by inserting the expanded value at the proper place *) match write_place config access p' nv ctx with | Ok ctx -> ctx | Error _ -> failwith "Unreachable" (** Update the environment to be able to read a place. When reading a place, we may be stuck along the way because some value is borrowed, we reach a symbolic value, etc. In this situation [read_place] fails while returning precise information about the failure. This function uses this information to update the environment (by ending borrows, expanding symbolic values) until we manage to fully read the place. *) let rec update_ctx_along_read_place (config : C.config) (access : access_kind) (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx = (* Attempt to read the place: if it fails, update the environment and retry *) match read_place config access p ctx with | Ok _ -> ctx | Error err -> let ctx = match err with | FailSharedLoan bids -> end_outer_borrows config bids ctx | FailMutLoan bid -> end_outer_borrow config bid ctx | FailInactivatedMutBorrow bid -> activate_inactivated_mut_borrow config Outer bid ctx | FailSymbolic (pe, sp) -> (* Expand the symbolic value *) expand_symbolic_value_no_branching config pe sp ctx | FailBottom (_, _, _) -> (* We can't expand [Bottom] values while reading them *) failwith "Found [Bottom] while reading a place" | FailBorrow _ -> failwith "Could not read a borrow" in update_ctx_along_read_place config access p ctx (** Update the environment to be able to write to a place. See [update_env_alond_read_place]. *) let rec update_ctx_along_write_place (config : C.config) (access : access_kind) (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx = (* Attempt to *read* (yes, "read": we check the access to the place, and write to it later) the place: if it fails, update the environment and retry *) match read_place config access p ctx with | Ok _ -> ctx | Error err -> let ctx = match err with | FailSharedLoan bids -> end_outer_borrows config bids ctx | FailMutLoan bid -> end_outer_borrow config bid ctx | FailInactivatedMutBorrow bid -> activate_inactivated_mut_borrow config Outer bid ctx | FailSymbolic (pe, sp) -> (* Expand the symbolic value *) expand_symbolic_value_no_branching config pe sp ctx | FailBottom (remaining_pes, pe, ty) -> (* Expand the [Bottom] value *) expand_bottom_value_from_projection config access p remaining_pes pe ty ctx | FailBorrow _ -> failwith "Could not write to a borrow" in update_ctx_along_write_place config access p ctx exception UpdateCtx of C.eval_ctx (** Small utility used to break control-flow *) (** End the loans at a given place: read the value, if it contains a loan, end this loan, repeat. This is used when reading, borrowing, writing to a value. We typically first call [update_ctx_along_read_place] or [update_ctx_along_write_place] to get access to the value, then call this function to "prepare" the value: when moving values, we can't move a value which contains loans and thus need to end them, etc. *) let rec end_loans_at_place (config : C.config) (access : access_kind) (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx = (* Iterator to explore a value and update the context whenever we find * loans. * We use exceptions to make it handy: whenever we update the * context, we raise an exception wrapping the updated context. * *) let obj = object inherit [_] V.iter_typed_value as super method! visit_borrow_content env bc = match bc with | V.SharedBorrow _ | V.MutBorrow (_, _) -> (* Nothing special to do *) super#visit_borrow_content env bc | V.InactivatedMutBorrow bid -> (* We need to activate inactivated borrows *) let ctx = activate_inactivated_mut_borrow config Inner bid ctx in raise (UpdateCtx ctx) method! visit_loan_content env lc = match lc with | V.SharedLoan (bids, v) -> ( (* End the loans if we need a modification access, otherwise dive into the shared value *) match access with | Read -> super#visit_SharedLoan env bids v | Write | Move -> let ctx = end_outer_borrows config bids ctx in raise (UpdateCtx ctx)) | V.MutLoan bid -> (* We always need to end mutable borrows *) let ctx = end_outer_borrow config bid ctx in raise (UpdateCtx ctx) end in (* First, retrieve the value *) match read_place config access p ctx with | Error _ -> failwith "Unreachable" | Ok v -> ( (* Inspect the value and update the context while doing so. If the context gets updated: perform a recursive call (many things may have been updated in the context: we need to re-read the value at place [p] - and this value may actually not be accessible anymore...) *) try obj#visit_typed_value () v; (* No context update required: return the current context *) ctx with UpdateCtx ctx -> (* The context was updated: do a recursive call to reinspect the value *) end_loans_at_place config access p ctx) (** Drop (end) all the loans and borrows at a given place, which should be seen as an l-value (we will write to it later, but need to drop the borrows before writing). We start by only dropping the borrows, then we end the loans. The reason is that some loan we find may be borrowed by another part of the subvalue. In order to correctly handle the "outer borrow" priority (we should end the outer borrows first) which is not really applied here (we are preparing the value for override: we can end the borrows inside, without ending the borrows we traversed to actually access the value) we first end the borrows we find in the place, to make sure all the "local" loans are taken care of. Then, if we find a loan, it means it is "externally" borrowed (the associated borrow is not in a subvalue of the place under inspection). Also note that whenever we end a loan, we might propagate back a value inside the place under inspection: we must re-end all the borrows we find there, before reconsidering loans. Repeat: - read the value at a given place - as long as we find a loan or a borrow, end it This is used to drop values (when we need to write to a place, we first drop the value there to properly propagate back values which are not/can't be borrowed anymore). *) let rec drop_borrows_loans_at_lplace (config : C.config) (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx = (* Iterator to explore a value and update the context whenever we find borrows/loans. We use exceptions to make it handy: whenever we update the context, we raise an exception wrapping the updated context. Note that we can end the borrows which are inside the value (while the value itself might be inside a borrow/loan: we are thus ending inner borrows). Because a loan inside the value may be linked to a borrow somewhere else *also inside* the value (it's possible with adts), we first end all the borrows we find - by using [Inner] to allow ending inner borrows - then end all the loans we find. It is really important to do this in two steps: the borrow linked to a loan may be inside the value at place p, in which case this borrow may be an inner borrow that we *can* end, but it may also be outside this value, in which case we need to end all the outer borrows first... Also, whenever the context is updated, we need to re-inspect the value at place p *in two steps* again (end borrows, then end loans). Example: ======= We want to end the borrows/loans at `*x` in the following environment: ``` x -> mut_borrow l0 (mut_loan l1, mut_borrow l1 (Int 3), mut_loan l2) y -> mut_borrow l2 (Bool true) ``` We have to consider two things: - the borrow `mut_borrow l1 (Int 3)` borrows a subvalue of `*x` - the borrow corresponding to the loan `mut_loan l2` is outside of `*x` We first end all the *borrows* (not the loans) inside of `*x`, which gives: ``` x -> mut_borrow l0 (Int 3, ⊥, mut_loan l2) y -> mut_borrow l2 (Bool true) ``` Note that when ending the borrows, we can (and have to) ignore the outer borrows (in this case `mut_borrow l0 ...`). Otherwise, we would have to end the borrow `l0` which is incorrect (note that we might have to drop the borrows/loans at `*x` if we evaluate, for instance, `*x = ...`). It is ok to ignore outer borrows in this case because whenever we end a borrow, it is an outer borrow locally to `*x` (i.e., we ignore the outer borrows when accessing `*x`, but once examining the value at `*x` we never dive into borrows: whenever we find one, we end it - it is thus an outer borrow, in some way). Then, we end the loans at `*x`. Note that as at this point `*x` doesn't contain borrows (only loans), the borrows corresponding to those loans are thus necessarily outside of `*x`: we mustn't ignore outer borrows this time. This gives: ``` x -> mut_borrow l0 (Int 3, ⊥, Bool true) y -> ⊥ ``` *) let obj = object inherit [_] V.iter_typed_value as super method! visit_borrow_content end_loans bc = (* Sanity check: we should have ended all the borrows before starting to end loans *) assert (not end_loans); (* We need to end all borrows. Note that we ignore the outer borrows when ending the borrows we find here (we call [end_inner_borrow(s)]: the value at place p might be below a borrow/loan). Note however that if we restrain ourselves at the value at place p, the borrow we found here can be considered as an outer borrow. *) match bc with | V.SharedBorrow bid | V.MutBorrow (bid, _) -> raise (UpdateCtx (end_inner_borrow config bid ctx)) | V.InactivatedMutBorrow bid -> (* We need to activate ithe nactivated borrow - later, we will * actually end it - Rk.: we could actually end it straight away * (this is not really important) *) let ctx = activate_inactivated_mut_borrow config Inner bid ctx in raise (UpdateCtx ctx) method! visit_loan_content end_loans lc = if (* If we can, end the loans, otherwise ignore: keep for later *) end_loans then (* We need to end all loans. Note that as all the borrows inside the value at place p should already have ended, the borrows associated to the loans we find here should be borrows from outside this value: we need to call [end_outer_borrow(s)] (we can't ignore outer borrows this time). *) match lc with | V.SharedLoan (bids, _) -> raise (UpdateCtx (end_outer_borrows config bids ctx)) | V.MutLoan bid -> raise (UpdateCtx (end_outer_borrow config bid ctx)) else super#visit_loan_content end_loans lc end in (* We do something similar to [end_loans_at_place]. First, retrieve the value *) match read_place config Write p ctx with | Error _ -> failwith "Unreachable" | Ok v -> ( (* Inspect the value and update the context while doing so. If the context gets updated: perform a recursive call (many things may have been updated in the context: first we need to retrieve the proper updated value - and this value may actually not be accessible anymore *) try (* Inspect the value: end the borrows only *) obj#visit_typed_value false v; (* Inspect the value: end the loans *) obj#visit_typed_value true v; (* No context update required: return the current context *) ctx with UpdateCtx ctx -> drop_borrows_loans_at_lplace config p ctx) (** Copy a value, and return the resulting value. Note that copying values might update the context. For instance, when copying shared borrows, we need to insert new shared borrows in the context. Also, this function is actually more general than it should be: it can be used to copy concrete ADT values, while ADT copy should be done through the Copy trait (i.e., by calling a dedicated function). This is why we added a parameter to control this copy. Note that here by ADT we mean the user-defined ADTs (not tuples or assumed types). *) let rec copy_value (allow_adt_copy : bool) (config : C.config) (ctx : C.eval_ctx) (v : V.typed_value) : C.eval_ctx * V.typed_value = (* Remark: at some point we rewrote this function to use iterators, but then * we reverted the changes: the result was less clear actually. In particular, * the fact that we have exhaustive matches below makes very obvious the cases * in which we need to fail *) match v.V.value with | V.Concrete _ -> (ctx, v) | V.Adt av -> (* Sanity check *) (match v.V.ty with | T.Adt (T.Assumed _, _, _) -> failwith "Can't copy an assumed value" | T.Adt (T.AdtId _, _, _) -> assert allow_adt_copy | T.Adt (T.Tuple, _, _) -> () (* Ok *) | _ -> failwith "Unreachable"); let ctx, fields = List.fold_left_map (copy_value allow_adt_copy config) ctx av.field_values in (ctx, { v with V.value = V.Adt { av with field_values = fields } }) | V.Bottom -> failwith "Can't copy ⊥" | V.Borrow bc -> ( (* We can only copy shared borrows *) match bc with | SharedBorrow bid -> (* We need to create a new borrow id for the copied borrow, and * update the context accordingly *) let ctx, bid' = C.fresh_borrow_id ctx in let ctx = reborrow_shared bid bid' ctx in (ctx, { v with V.value = V.Borrow (SharedBorrow bid') }) | MutBorrow (_, _) -> failwith "Can't copy a mutable borrow" | V.InactivatedMutBorrow _ -> failwith "Can't copy an inactivated mut borrow") | V.Loan lc -> ( (* We can only copy shared loans *) match lc with | V.MutLoan _ -> failwith "Can't copy a mutable loan" | V.SharedLoan (_, sv) -> (* We don't copy the shared loan: only the shared value inside *) copy_value allow_adt_copy config ctx sv) | V.Symbolic sp -> (* We can copy only if the type is "primitively" copyable. * Note that in the general case, copy is a trait: copying values * thus requires calling the proper function. Here, we copy values * for very simple types such as integers, shared borrows, etc. *) assert ( type_is_primitively_copyable (Subst.erase_regions sp.V.svalue.V.sv_ty)); (* If the type is copyable, we simply return the current value. Side * remark: what is important to look at when copying symbolic values * is symbolic expansion. The important subcase is the expansion of shared * borrows: when doing so, every occurrence of the same symbolic value * must use a fresh borrow id. *) (ctx, v) (** Small utility. Prepare a place which is to be used as the destination of an assignment: update the environment along the paths, end the borrows and loans at this place, etc. Return the updated context and the (updated) value at the end of the place. This value should not contain any loan or borrow (and we check it is the case). Note that it is very likely to contain [Bottom] values. *) let prepare_lplace (config : C.config) (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx * V.typed_value = (* TODO *) let access = Write in let ctx = update_ctx_along_write_place config access p ctx in (* End the borrows and loans, starting with the borrows *) let ctx = drop_borrows_loans_at_lplace config p ctx in (* Read the value and check it *) let v = read_place_unwrap config access p ctx in (* Sanity checks *) assert (not (loans_in_value v)); assert (not (borrows_in_value v)); (* Return *) (ctx, v) (** Read the value at a given place. As long as it is a loan, end the loan. This function doesn't perform a recursive exploration: it won't dive into the value to end all the inner loans (contrary to [drop_borrows_loans_at_lplace] for instance). *) let rec end_loan_exactly_at_place (config : C.config) (access : access_kind) (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx = let v = read_place_unwrap config access p ctx in match v.V.value with | V.Loan (V.SharedLoan (bids, _)) -> let ctx = end_outer_borrows config bids ctx in end_loan_exactly_at_place config access p ctx | V.Loan (V.MutLoan bid) -> let ctx = end_outer_borrow config bid ctx in end_loan_exactly_at_place config access p ctx | _ -> ctx