(* This file defines the basic blocks to implement the semantics of borrows. * Note that those functions are not only used in InterpreterBorrows, but * also in Invariants or InterpreterProjectors *) module T = Types module V = Values module C = Contexts module Subst = Substitute module L = Logging open Utils open TypesUtils open InterpreterUtils (** The local logger *) let log = L.borrows_log (** TODO: cleanup this a bit, once we have a better understanding about what we need. TODO: I'm not sure in which file this should be moved... *) type exploration_kind = { enter_shared_loans : bool; enter_mut_borrows : bool; enter_abs : bool; (** Note that if we allow to enter abs, we don't check whether we enter mutable/shared loans or borrows: there are no use cases requiring a finer control. *) } (** This record controls how some generic helper lookup/update functions behave, by restraining the kind of therms they can enter. *) let ek_all : exploration_kind = { enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true } type borrow_ids = Borrows of V.BorrowId.set_t | Borrow of V.BorrowId.id [@@deriving show] exception FoundBorrowIds of borrow_ids type priority_borrows_or_abs = | OuterBorrows of borrow_ids | OuterAbs of V.AbstractionId.id | InnerLoans of borrow_ids [@@deriving show] let update_if_none opt x = match opt with None -> Some x | _ -> opt exception FoundPriority of priority_borrows_or_abs (** Utility exception *) type loan_or_borrow_content = | LoanContent of V.loan_content | BorrowContent of V.borrow_content [@@deriving show] (** Check if two different projections intersect. This is necessary when giving a symbolic value to an abstraction: we need to check that the regions which are already ended inside the abstraction don't intersect the regions over which we project in the new abstraction. Note that the two abstractions have different views (in terms of regions) of the symbolic value (hence the two region types). *) let rec projections_intersect (ty1 : T.rty) (rset1 : T.RegionId.set_t) (ty2 : T.rty) (rset2 : T.RegionId.set_t) : bool = match (ty1, ty2) with | T.Bool, T.Bool | T.Char, T.Char | T.Str, T.Str -> false | T.Integer int_ty1, T.Integer int_ty2 -> assert (int_ty1 = int_ty2); false | T.Adt (id1, regions1, tys1), T.Adt (id2, regions2, tys2) -> assert (id1 = id2); (* The intersection check for the ADTs is very crude: * we check if some arguments intersect. As all the type and region * parameters should be used somewhere in the ADT (otherwise rustc * generates an error), it means that it should be equivalent to checking * whether two fields intersect (and anyway comparing the field types is * difficult in case of enumerations...). * If we didn't have the above property enforced by the rust compiler, * this check would still be a reasonable conservative approximation. *) let regions = List.combine regions1 regions2 in let tys = List.combine tys1 tys2 in List.exists (fun (r1, r2) -> region_in_set r1 rset1 && region_in_set r2 rset2) regions || List.exists (fun (ty1, ty2) -> projections_intersect ty1 rset1 ty2 rset2) tys | T.Array ty1, T.Array ty2 | T.Slice ty1, T.Slice ty2 -> projections_intersect ty1 rset1 ty2 rset2 | T.Ref (r1, ty1, kind1), T.Ref (r2, ty2, kind2) -> (* Sanity check *) assert (kind1 = kind2); (* The projections intersect if the borrows intersect or their contents * intersect *) (region_in_set r1 rset1 && region_in_set r2 rset2) || projections_intersect ty1 rset1 ty2 rset2 | T.TypeVar id1, T.TypeVar id2 -> assert (id1 = id2); false | _ -> log#lerror (lazy ("projections_intersect: unexpected inputs:" ^ "\n- ty1: " ^ T.show_rty ty1 ^ "\n- ty2: " ^ T.show_rty ty2)); failwith "Unreachable" (** Lookup a loan content. The loan is referred to by a borrow id. TODO: group abs_or_var_id and g_loan_content. *) let lookup_loan_opt (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) : (abs_or_var_id * g_loan_content) option = (* We store here whether we are inside an abstraction or a value - note that we * could also track that with the environment, it would probably be more idiomatic * and cleaner *) let abs_or_var : abs_or_var_id option ref = ref None in let obj = object inherit [_] C.iter_eval_ctx as super method! visit_borrow_content env bc = match bc with | V.SharedBorrow bid -> (* Nothing specific to do *) super#visit_SharedBorrow env bid | V.InactivatedMutBorrow bid -> (* Nothing specific to do *) super#visit_InactivatedMutBorrow env bid | V.MutBorrow (bid, mv) -> (* Control the dive *) if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv else () method! visit_loan_content env lc = match lc with | V.SharedLoan (bids, sv) -> (* Check if this is the loan we are looking for, and control the dive *) if V.BorrowId.Set.mem l bids then raise (FoundGLoanContent (Concrete lc)) else if ek.enter_shared_loans then super#visit_SharedLoan env bids sv else () | V.MutLoan bid -> (* Check if this is the loan we are looking for *) if bid = l then raise (FoundGLoanContent (Concrete lc)) else super#visit_MutLoan env bid (** We reimplement [visit_Loan] (rather than the more precise functions [visit_SharedLoan], etc.) on purpose: as we have an exhaustive match below, we are more resilient to definition updates (the compiler is our friend). *) method! visit_aloan_content env lc = match lc with | V.AMutLoan (bid, av) -> if bid = l then raise (FoundGLoanContent (Abstract lc)) else super#visit_AMutLoan env bid av | V.ASharedLoan (bids, v, av) -> if V.BorrowId.Set.mem l bids then raise (FoundGLoanContent (Abstract lc)) else super#visit_ASharedLoan env bids v av | V.AEndedMutLoan { given_back; child } -> super#visit_AEndedMutLoan env given_back child | V.AEndedSharedLoan (v, av) -> super#visit_AEndedSharedLoan env v av | V.AIgnoredMutLoan (bid, av) -> super#visit_AIgnoredMutLoan env bid av | V.AEndedIgnoredMutLoan { given_back; child } -> super#visit_AEndedIgnoredMutLoan env given_back child | V.AIgnoredSharedLoan av -> super#visit_AIgnoredSharedLoan env av (** Note that we don't control diving inside the abstractions: if we allow to dive inside abstractions, we allow to go anywhere (because there are no use cases requiring finer control) *) method! visit_Var env bv v = assert (Option.is_none !abs_or_var); abs_or_var := Some (VarId (match bv with Some bv -> Some bv.C.index | None -> None)); super#visit_Var env bv v; abs_or_var := None method! visit_Abs env abs = assert (Option.is_none !abs_or_var); if ek.enter_abs then ( abs_or_var := Some (AbsId abs.V.abs_id); super#visit_Abs env abs; abs_or_var := None) else () end in (* We use exceptions *) try obj#visit_eval_ctx () ctx; None with FoundGLoanContent lc -> ( match !abs_or_var with | Some abs_or_var -> Some (abs_or_var, lc) | None -> failwith "Inconsistent state") (** Lookup a loan content. The loan is referred to by a borrow id. Raises an exception if no loan was found. *) let lookup_loan (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) : abs_or_var_id * g_loan_content = match lookup_loan_opt ek l ctx with | None -> failwith "Unreachable" | Some res -> res (** Update a loan content. The loan is referred to by a borrow id. This is a helper function: it might break invariants. *) let update_loan (ek : exploration_kind) (l : V.BorrowId.id) (nlc : V.loan_content) (ctx : C.eval_ctx) : C.eval_ctx = (* We use a reference to check that we update exactly one loan: when updating * inside values, we check we don't update more than one loan. Then, upon * returning we check that we updated at least once. *) let r = ref false in let update () : V.loan_content = assert (not !r); r := true; nlc in let obj = object inherit [_] C.map_eval_ctx as super method! visit_borrow_content env bc = match bc with | V.SharedBorrow _ | V.InactivatedMutBorrow _ -> (* Nothing specific to do *) super#visit_borrow_content env bc | V.MutBorrow (bid, mv) -> (* Control the dive into mutable borrows *) if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv else V.MutBorrow (bid, mv) method! visit_loan_content env lc = match lc with | V.SharedLoan (bids, sv) -> (* Shared loan: check if this is the loan we are looking for, and control the dive. *) if V.BorrowId.Set.mem l bids then update () else if ek.enter_shared_loans then super#visit_SharedLoan env bids sv else V.SharedLoan (bids, sv) | V.MutLoan bid -> (* Mut loan: checks if this is the loan we are looking for *) if bid = l then update () else super#visit_MutLoan env bid (** We reimplement [visit_loan_content] (rather than one of the sub- functions) on purpose: exhaustive matches are good for maintenance *) method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else abs (** Note that once inside the abstractions, we don't control diving (there are no use cases requiring finer control). Also, as we give back a [loan_content] (and not an [aloan_content]) we don't need to do reimplement the visit functions for the values inside the abstractions (rk.: there may be "concrete" values inside abstractions, so there is a utility in diving inside). *) end in let ctx = obj#visit_eval_ctx () ctx in (* Check that we updated at least one loan *) assert !r; ctx (** Update a abstraction loan content. The loan is referred to by a borrow id. This is a helper function: it might break invariants. *) let update_aloan (ek : exploration_kind) (l : V.BorrowId.id) (nlc : V.aloan_content) (ctx : C.eval_ctx) : C.eval_ctx = (* We use a reference to check that we update exactly one loan: when updating * inside values, we check we don't update more than one loan. Then, upon * returning we check that we updated at least once. *) let r = ref false in let update () : V.aloan_content = assert (not !r); r := true; nlc in let obj = object inherit [_] C.map_eval_ctx as super method! visit_aloan_content env lc = match lc with | V.AMutLoan (bid, av) -> if bid = l then update () else super#visit_AMutLoan env bid av | V.ASharedLoan (bids, v, av) -> if V.BorrowId.Set.mem l bids then update () else super#visit_ASharedLoan env bids v av | V.AEndedMutLoan { given_back; child } -> super#visit_AEndedMutLoan env given_back child | V.AEndedSharedLoan (v, av) -> super#visit_AEndedSharedLoan env v av | V.AIgnoredMutLoan (bid, av) -> super#visit_AIgnoredMutLoan env bid av | V.AEndedIgnoredMutLoan { given_back; child } -> super#visit_AEndedIgnoredMutLoan env given_back child | V.AIgnoredSharedLoan av -> super#visit_AIgnoredSharedLoan env av method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else abs (** Note that once inside the abstractions, we don't control diving (there are no use cases requiring finer control). *) end in let ctx = obj#visit_eval_ctx () ctx in (* Check that we updated at least one loan *) assert !r; ctx (** Lookup a borrow content from a borrow id. *) let lookup_borrow_opt (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) : g_borrow_content option = let obj = object inherit [_] C.iter_eval_ctx as super method! visit_borrow_content env bc = match bc with | V.MutBorrow (bid, mv) -> (* Check the borrow id and control the dive *) if bid = l then raise (FoundGBorrowContent (Concrete bc)) else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv else () | V.SharedBorrow bid -> (* Check the borrow id *) if bid = l then raise (FoundGBorrowContent (Concrete bc)) else () | V.InactivatedMutBorrow bid -> (* Check the borrow id *) if bid = l then raise (FoundGBorrowContent (Concrete bc)) else () method! visit_loan_content env lc = match lc with | V.MutLoan bid -> (* Nothing special to do *) super#visit_MutLoan env bid | V.SharedLoan (bids, sv) -> (* Control the dive *) if ek.enter_shared_loans then super#visit_SharedLoan env bids sv else () method! visit_aborrow_content env bc = match bc with | V.AMutBorrow (bid, av) -> if bid = l then raise (FoundGBorrowContent (Abstract bc)) else super#visit_AMutBorrow env bid av | V.ASharedBorrow bid -> if bid = l then raise (FoundGBorrowContent (Abstract bc)) else super#visit_ASharedBorrow env bid | V.AIgnoredMutBorrow (opt_bid, av) -> super#visit_AIgnoredMutBorrow env opt_bid av | V.AEndedIgnoredMutBorrow { given_back_loans_proj; child } -> super#visit_AEndedIgnoredMutBorrow env given_back_loans_proj child | V.AProjSharedBorrow asb -> if borrow_in_asb l asb then raise (FoundGBorrowContent (Abstract bc)) else () method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else () end in (* We use exceptions *) try obj#visit_eval_ctx () ctx; None with FoundGBorrowContent lc -> Some lc (** Lookup a borrow content from a borrow id. Raise an exception if no loan was found *) let lookup_borrow (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) : g_borrow_content = match lookup_borrow_opt ek l ctx with | None -> failwith "Unreachable" | Some lc -> lc (** Update a borrow content. The borrow is referred to by a borrow id. This is a helper function: it might break invariants. *) let update_borrow (ek : exploration_kind) (l : V.BorrowId.id) (nbc : V.borrow_content) (ctx : C.eval_ctx) : C.eval_ctx = (* We use a reference to check that we update exactly one borrow: when updating * inside values, we check we don't update more than one borrow. Then, upon * returning we check that we updated at least once. *) let r = ref false in let update () : V.borrow_content = assert (not !r); r := true; nbc in let obj = object inherit [_] C.map_eval_ctx as super method! visit_borrow_content env bc = match bc with | V.MutBorrow (bid, mv) -> (* Check the id and control dive *) if bid = l then update () else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv else V.MutBorrow (bid, mv) | V.SharedBorrow bid -> (* Check the id *) if bid = l then update () else super#visit_SharedBorrow env bid | V.InactivatedMutBorrow bid -> (* Check the id *) if bid = l then update () else super#visit_InactivatedMutBorrow env bid method! visit_loan_content env lc = match lc with | V.SharedLoan (bids, sv) -> (* Control the dive *) if ek.enter_shared_loans then super#visit_SharedLoan env bids sv else V.SharedLoan (bids, sv) | V.MutLoan bid -> (* Nothing specific to do *) super#visit_MutLoan env bid method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else abs end in let ctx = obj#visit_eval_ctx () ctx in (* Check that we updated at least one borrow *) assert !r; ctx (** Update an abstraction borrow content. The borrow is referred to by a borrow id. This is a helper function: it might break invariants. *) let update_aborrow (ek : exploration_kind) (l : V.BorrowId.id) (nv : V.avalue) (ctx : C.eval_ctx) : C.eval_ctx = (* We use a reference to check that we update exactly one borrow: when updating * inside values, we check we don't update more than one borrow. Then, upon * returning we check that we updated at least once. *) let r = ref false in let update () : V.avalue = assert (not !r); r := true; nv in let obj = object inherit [_] C.map_eval_ctx as super method! visit_ABorrow env bc = match bc with | V.AMutBorrow (bid, av) -> if bid = l then update () else V.ABorrow (super#visit_AMutBorrow env bid av) | V.ASharedBorrow bid -> if bid = l then update () else V.ABorrow (super#visit_ASharedBorrow env bid) | V.AIgnoredMutBorrow (opt_bid, av) -> V.ABorrow (super#visit_AIgnoredMutBorrow env opt_bid av) | V.AEndedIgnoredMutBorrow { given_back_loans_proj; child } -> V.ABorrow (super#visit_AEndedIgnoredMutBorrow env given_back_loans_proj child) | V.AProjSharedBorrow asb -> if borrow_in_asb l asb then update () else V.ABorrow (super#visit_AProjSharedBorrow env asb) method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else abs end in let ctx = obj#visit_eval_ctx () ctx in (* Check that we updated at least one borrow *) assert !r; ctx (** Auxiliary function: see its usage in [end_borrow_get_borrow_in_value] *) let update_outer_borrows (outer : V.AbstractionId.id option * borrow_ids option) (x : borrow_ids) : V.AbstractionId.id option * borrow_ids option = let abs, opt = outer in (abs, update_if_none opt x) (** Return the first loan we find in a value *) let get_first_loan_in_value (v : V.typed_value) : V.loan_content option = let obj = object inherit [_] V.iter_typed_value method! visit_loan_content _ lc = raise (FoundLoanContent lc) end in (* We use exceptions *) try obj#visit_typed_value () v; None with FoundLoanContent lc -> Some lc (** Return the first borrow we find in a value *) let get_first_borrow_in_value (v : V.typed_value) : V.borrow_content option = let obj = object inherit [_] V.iter_typed_value method! visit_borrow_content _ bc = raise (FoundBorrowContent bc) end in (* We use exceptions *) try obj#visit_typed_value () v; None with FoundBorrowContent bc -> Some bc (** Return the first loan or borrow content we find in a value (starting with the outer ones). [with_borrows]: - if true: return the first loan or borrow we find - if false: return the first loan we find, do not dive into borrowed values *) let get_first_outer_loan_or_borrow_in_value (with_borrows : bool) (v : V.typed_value) : loan_or_borrow_content option = let obj = object inherit [_] V.iter_typed_value method! visit_borrow_content _ bc = if with_borrows then raise (FoundBorrowContent bc) else () method! visit_loan_content _ lc = raise (FoundLoanContent lc) end in (* We use exceptions *) try obj#visit_typed_value () v; None with | FoundLoanContent lc -> Some (LoanContent lc) | FoundBorrowContent bc -> Some (BorrowContent bc) type gproj_borrows = | AProjBorrows of V.AbstractionId.id * V.symbolic_value | ProjBorrows of V.symbolic_value let proj_borrows_intersects_proj_loans (proj_borrows : T.RegionId.Set.t * V.symbolic_value * T.rty) (proj_loans : T.RegionId.Set.t * V.symbolic_value) : bool = let b_regions, b_sv, b_ty = proj_borrows in let l_regions, l_sv = proj_loans in if same_symbolic_id b_sv l_sv then projections_intersect l_sv.V.sv_ty l_regions b_ty b_regions else false (** Lookup the first aproj_borrows (including aproj_shared_borrows) over a symbolic value which intersects a given set of regions. Note that there should be **at most one** (one reason is that we force the expansion of primitively copyable values before giving them to abstractions). Returns the id of the owning abstraction, the projection type used in this abstraction and a boolean indicating whether the projector is over a mutable value (`true` is "mutable", `false` is "shared"). [explore_shared]: if `true` also explore projectors over shared values, otherwise ignore. *) let lookup_first_intersecting_aproj_borrows_opt (explore_shared : bool) (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) : (V.AbstractionId.id * T.rty * bool) option = let found = ref None in let set r = assert (Option.is_none !found); found := Some r in let check_proj_borrows_and_raise abs sv' proj_ty = if proj_borrows_intersects_proj_loans (abs.V.regions, sv', proj_ty) (regions, sv) then ( let is_mut = false in set (abs.abs_id, proj_ty, is_mut); raise Found) else () in let obj = object inherit [_] C.iter_eval_ctx as super method! visit_abs _ abs = super#visit_abs (Some abs) abs method! visit_abstract_shared_borrows abs asb = if explore_shared then let abs = Option.get abs in let check asb = match asb with | V.AsbBorrow _ -> () | V.AsbProjReborrows (sv', proj_ty) -> check_proj_borrows_and_raise abs sv' proj_ty in List.iter check asb else () method! visit_ASymbolic abs sproj = let abs = Option.get abs in match sproj with | AProjLoans _ | AEndedProjLoans | AEndedProjBorrows -> () | AProjBorrows (sv', proj_rty) -> check_proj_borrows_and_raise abs sv' proj_rty end in (* We use exceptions *) try obj#visit_eval_ctx None ctx; None with Found -> (* Return - while checking that the result is indeed `Some ...` *) let res = Option.get !found in Some res (** Lookup the aproj_borrows (not aproj_borrows_shared!) over a symbolic value which intersects a given set of regions. Note that there should be **at most one** (one reason is that we force the expansion of primitively copyable values before giving them to abstractions). Returns the id of the owning abstraction, and the projection type used in this abstraction. *) let lookup_intersecting_aproj_borrows_not_shared_opt (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) : (V.AbstractionId.id * T.rty) option = let explore_shared = false in match lookup_first_intersecting_aproj_borrows_opt explore_shared regions sv ctx with | None -> None | Some (abs_id, rty, is_mut) -> assert is_mut; Some (abs_id, rty) (** Similar to [lookup_intersecting_aproj_borrows_not_shared_opt], but updates the value. *) let update_intersecting_aproj_borrows_not_shared (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (nv : V.typed_avalue) (ctx : C.eval_ctx) : C.eval_ctx = (* Small helpers to make sure we update the context exactly once *) let found = ref false in let set () : V.avalue = assert (not !found); found := true; nv.V.value in (* The visitor *) let obj = object inherit [_] C.map_eval_ctx as super method! visit_abs _ abs = super#visit_abs (Some abs) abs method! visit_ASymbolic abs sproj = match sproj with | AProjLoans _ | AEndedProjLoans | AEndedProjBorrows -> super#visit_ASymbolic abs sproj | AProjBorrows (sv', proj_rty) -> let abs = Option.get abs in if proj_borrows_intersects_proj_loans (abs.regions, sv', proj_rty) (regions, sv) then set () else super#visit_ASymbolic (Some abs) sproj end in (* Apply *) let ctx = obj#visit_eval_ctx None ctx in (* Check that we updated the context at least once *) assert !found; (* Return *) ctx