(** Extract to F* *) open Errors open Pure open PureUtils open TranslateCore open PureToExtract open StringUtils module F = Format (** A qualifier for a type definition. Controls whether we should use `type ...` or `and ...` (for mutually recursive datatypes). *) type type_def_qualif = Type | And (** A qualifier for function definitions. Controls whether we should use `let ...`, `let rec ...` or `and ...` *) type fun_def_qualif = Let | LetRec | And (** Small helper to compute the name of an int type *) let fstar_int_name (int_ty : integer_type) = match int_ty with | Isize -> "isize" | I8 -> "i8" | I16 -> "i16" | I32 -> "i32" | I64 -> "i64" | I128 -> "i128" | Usize -> "usize" | U8 -> "u8" | U16 -> "u16" | U32 -> "u32" | U64 -> "u64" | U128 -> "u128" (** Small helper to compute the name of a unary operation *) let fstar_unop_name (unop : unop) : string = match unop with Not -> "not" | Neg int_ty -> fstar_int_name int_ty ^ "_neg" (** Small helper to compute the name of a binary operation (note that many binary operations like "less than" are extracted to primitive operations, like `<`. *) let fstar_named_binop_name (binop : E.binop) (int_ty : integer_type) : string = let binop = match binop with | Div -> "div" | Rem -> "rem" | Add -> "add" | Sub -> "sub" | Mul -> "mul" | _ -> raise (Failure "Unreachable") in fstar_int_name int_ty ^ "_" ^ binop (** A list of keywords/identifiers used in F* and with which we want to check collision. *) let fstar_keywords = let named_unops = fstar_unop_name Not :: List.map (fun it -> fstar_unop_name (Neg it)) T.all_signed_int_types in let named_binops = [ E.Div; Rem; Add; Sub; Mul ] in let named_binops = List.concat (List.map (fun bn -> List.map (fun it -> fstar_named_binop_name bn it) T.all_int_types) named_binops) in let misc = [ "let"; "rec"; "in"; "fn"; "int"; "list"; "FStar"; "FStar.Mul"; "type"; "match"; "with"; "assert"; "assert_norm"; "Type0"; "unit"; "not"; ] in List.concat [ named_unops; named_binops; misc ] let fstar_assumed_adts : (assumed_ty * string) list = [ (Result, "result"); (Option, "option"); (Vec, "vec") ] let fstar_assumed_structs : (assumed_ty * string) list = [] let fstar_assumed_variants : (assumed_ty * VariantId.id * string) list = [ (Result, result_return_id, "Return"); (Result, result_fail_id, "Fail"); (Option, option_some_id, "Some"); (Option, option_none_id, "None"); ] let fstar_assumed_functions : (A.assumed_fun_id * T.RegionGroupId.id option * string) list = let rg0 = Some T.RegionGroupId.zero in [ (Replace, None, "mem_replace_fwd"); (Replace, rg0, "mem_replace_back"); (VecNew, None, "vec_new"); (VecPush, None, "vec_push_fwd") (* Shouldn't be used *); (VecPush, rg0, "vec_push_back"); (VecInsert, None, "vec_insert_fwd") (* Shouldn't be used *); (VecInsert, rg0, "vec_insert_back"); (VecLen, None, "vec_len"); (VecIndex, None, "vec_index_fwd"); (VecIndex, rg0, "vec_index_back") (* shouldn't be used *); (VecIndexMut, None, "vec_index_mut_fwd"); (VecIndexMut, rg0, "vec_index_mut_back"); ] let fstar_names_map_init = { keywords = fstar_keywords; assumed_adts = fstar_assumed_adts; assumed_structs = fstar_assumed_structs; assumed_variants = fstar_assumed_variants; assumed_functions = fstar_assumed_functions; } let fstar_extract_unop (extract_expr : bool -> texpression -> unit) (fmt : F.formatter) (inside : bool) (unop : unop) (arg : texpression) : unit = let unop = fstar_unop_name unop in if inside then F.pp_print_string fmt "("; F.pp_print_string fmt unop; F.pp_print_space fmt (); extract_expr true arg; if inside then F.pp_print_string fmt ")" let fstar_extract_binop (extract_expr : bool -> texpression -> unit) (fmt : F.formatter) (inside : bool) (binop : E.binop) (int_ty : integer_type) (arg0 : texpression) (arg1 : texpression) : unit = if inside then F.pp_print_string fmt "("; (* Some binary operations have a special treatment *) (match binop with | Eq | Lt | Le | Ne | Ge | Gt -> let binop = match binop with | Eq -> "=" | Lt -> "<" | Le -> "<=" | Ne -> "<>" | Ge -> ">=" | Gt -> ">" | _ -> raise (Failure "Unreachable") in extract_expr false arg0; F.pp_print_space fmt (); F.pp_print_string fmt binop; F.pp_print_space fmt (); extract_expr false arg1 | Div | Rem | Add | Sub | Mul -> let binop = fstar_named_binop_name binop int_ty in F.pp_print_string fmt binop; F.pp_print_space fmt (); extract_expr false arg0; F.pp_print_space fmt (); extract_expr false arg1 | BitXor | BitAnd | BitOr | Shl | Shr -> raise Unimplemented); if inside then F.pp_print_string fmt ")" (** * [ctx]: we use the context to lookup type definitions, to retrieve type names. * This is used to compute variable names, when they have no basenames: in this * case we use the first letter of the type name. * * [variant_concatenate_type_name]: if true, add the type name as a prefix * to the variant names. * Ex.: * In Rust: * ``` * enum List = { * Cons(u32, Box),x * Nil, * } * ``` * * F*, if option activated: * ``` * type list = * | ListCons : u32 -> list -> list * | ListNil : list * ``` * * F*, if option not activated: * ``` * type list = * | Cons : u32 -> list -> list * | Nil : list * ``` * * Rk.: this should be true by default, because in Rust all the variant names * are actively uniquely identifier by the type name `List::Cons(...)`, while * in other languages it is not necessarily the case, and thus clashes can mess * up type checking. Note that some languages actually forbids the name clashes * (it is the case of F* ). *) let mk_formatter (ctx : trans_ctx) (variant_concatenate_type_name : bool) : formatter = let int_name = fstar_int_name in (* For now, we treat only the case where type names are of the * form: `Module::Type` *) let get_type_name (name : name) : string = match name with | [ _module; name ] -> name | _ -> raise (Failure ("Unexpected name shape: " ^ Print.name_to_string name)) in let type_name_to_camel_case name = let name = get_type_name name in to_camel_case name in let type_name_to_snake_case name = let name = get_type_name name in to_snake_case name in let type_name name = type_name_to_snake_case name ^ "_t" in let field_name (def_name : name) (field_id : FieldId.id) (field_name : string option) : string = let def_name = type_name_to_snake_case def_name ^ "_" in match field_name with | Some field_name -> def_name ^ field_name | None -> def_name ^ FieldId.to_string field_id in let variant_name (def_name : name) (variant : string) : string = let variant = to_camel_case variant in if variant_concatenate_type_name then type_name_to_camel_case def_name ^ variant else variant in let struct_constructor (basename : name) : string = let tname = type_name basename in "Mk" ^ tname in (* For now, we treat only the case where function names are of the * form: * `module::function` (if top function) * `module::Type::function` (for implementations) *) let get_fun_name (name : name) : string = match name with | [ _module; name ] -> name | [ _module; ty; name ] -> to_snake_case ty ^ "_" ^ name | _ -> raise (Failure ("Unexpected name shape: " ^ Print.name_to_string name)) in let fun_name (_fid : A.fun_id) (fname : name) (num_rgs : int) (rg : region_group_info option) (filter_info : bool * int) : string = let fname = get_fun_name fname in (* Converting to snake case should be a no-op, but it doesn't cost much *) let fname = to_snake_case fname in (* Compute the suffix *) let suffix = default_fun_suffix num_rgs rg filter_info in (* Concatenate *) fname ^ suffix in let decreases_clause_name (_fid : FunDefId.id) (fname : name) : string = let fname = get_fun_name fname in (* Converting to snake case should be a no-op, but it doesn't cost much *) let fname = to_snake_case fname in (* Compute the suffix *) let suffix = "_decreases" in (* Concatenate *) fname ^ suffix in let var_basename (_varset : StringSet.t) (basename : string option) (ty : ty) : string = (* If there is a basename, we use it *) match basename with | Some basename -> (* This should be a no-op *) to_snake_case basename | None -> ( (* No basename: we use the first letter of the type *) match ty with | Adt (type_id, tys) -> ( match type_id with | Tuple -> (* The "pair" case is frequent enough to have its special treatment *) if List.length tys = 2 then "p" else "t" | Assumed Result -> "r" | Assumed Option -> "opt" | Assumed Vec -> "v" | AdtId adt_id -> let def = TypeDefId.Map.find adt_id ctx.type_context.type_defs in let c = (get_type_name def.name).[0] in let c = StringUtils.lowercase_ascii c in String.make 1 c) | TypeVar _ -> "x" (* lacking imagination here... *) | Bool -> "b" | Char -> "c" | Integer _ -> "i" | Str -> "s" | Array _ | Slice _ -> raise Unimplemented) in let type_var_basename (_varset : StringSet.t) (basename : string) : string = (* This is *not* a no-op: type variables in Rust often start with * a capital letter *) to_snake_case basename in let append_index (basename : string) (i : int) : string = basename ^ string_of_int i in let extract_constant_value (fmt : F.formatter) (_inside : bool) (cv : constant_value) : unit = match cv with | Scalar sv -> F.pp_print_string fmt (Z.to_string sv.V.value) | Bool b -> let b = if b then "true" else "false" in F.pp_print_string fmt b | Char c -> F.pp_print_string fmt ("'" ^ String.make 1 c ^ "'") | String s -> (* We need to replace all the line breaks *) let s = StringUtils.map (fun c -> if c = '\n' then "\n" else String.make 1 c) s in F.pp_print_string fmt ("\"" ^ s ^ "\"") in { bool_name = "bool"; char_name = "char"; int_name; str_name = "string"; field_name; variant_name; struct_constructor; type_name; fun_name; decreases_clause_name; var_basename; type_var_basename; append_index; extract_constant_value; extract_unop = fstar_extract_unop; extract_binop = fstar_extract_binop; } (** [inside] constrols whether we should add parentheses or not around type application (if `true` we add parentheses). *) let rec extract_ty (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) (ty : ty) : unit = match ty with | Adt (type_id, tys) -> ( match type_id with | Tuple -> (* This is a bit annoying, but in F* `()` is not the unit type: * we have to write `unit`... *) if tys = [] then F.pp_print_string fmt "unit" else ( F.pp_print_string fmt "("; Collections.List.iter_link (fun () -> F.pp_print_space fmt (); F.pp_print_string fmt "&"; F.pp_print_space fmt ()) (extract_ty ctx fmt true) tys; F.pp_print_string fmt ")") | AdtId _ | Assumed _ -> if inside then F.pp_print_string fmt "("; F.pp_print_string fmt (ctx_get_type type_id ctx); if tys <> [] then F.pp_print_space fmt (); Collections.List.iter_link (F.pp_print_space fmt) (extract_ty ctx fmt true) tys; if inside then F.pp_print_string fmt ")") | TypeVar vid -> F.pp_print_string fmt (ctx_get_type_var vid ctx) | Bool -> F.pp_print_string fmt ctx.fmt.bool_name | Char -> F.pp_print_string fmt ctx.fmt.char_name | Integer int_ty -> F.pp_print_string fmt (ctx.fmt.int_name int_ty) | Str -> F.pp_print_string fmt ctx.fmt.str_name | Array _ | Slice _ -> raise Unimplemented (** Compute the names for all the top-level identifiers used in a type definition (type name, variant names, field names, etc. but not type parameters). We need to do this preemptively, beforce extracting any definition, because of recursive definitions. *) let extract_type_def_register_names (ctx : extraction_ctx) (def : type_def) : extraction_ctx = (* Compute and register the type def name *) let ctx = ctx_add_type_def def ctx in (* Compute and register: * - the variant names, if this is an enumeration * - the field names, if this is a structure *) let ctx = match def.kind with | Struct fields -> (* Add the fields *) let ctx = fst (ctx_add_fields def (FieldId.mapi (fun id f -> (id, f)) fields) ctx) in (* Add the constructor name *) fst (ctx_add_struct def ctx) | Enum variants -> fst (ctx_add_variants def (VariantId.mapi (fun id v -> (id, v)) variants) ctx) in (* Return *) ctx let extract_type_def_struct_body (ctx : extraction_ctx) (fmt : F.formatter) (def : type_def) (fields : field list) : unit = (* We want to generate a definition which looks like this: * ``` * type t = { x : int; y : bool; } * ``` * * If there isn't enough space on one line: * ``` * type t = * { * x : int; y : bool; * } * ``` * * And if there is even less space: * ``` * type t = * { * x : int; * y : bool; * } * ``` * * Also, in case there are no fields, we need to define the type as `unit` * (`type t = {}` doesn't work in F* ). *) (* Note that we already printed: `type t =` *) if fields = [] then ( F.pp_print_space fmt (); F.pp_print_string fmt "unit") else ( F.pp_print_space fmt (); F.pp_print_string fmt "{"; F.pp_print_break fmt 1 ctx.indent_incr; (* The body itself *) F.pp_open_hvbox fmt 0; (* Print the fields *) let print_field (field_id : FieldId.id) (f : field) : unit = let field_name = ctx_get_field (AdtId def.def_id) field_id ctx in F.pp_open_box fmt ctx.indent_incr; F.pp_print_string fmt field_name; F.pp_print_space fmt (); F.pp_print_string fmt ":"; F.pp_print_space fmt (); extract_ty ctx fmt false f.field_ty; F.pp_print_string fmt ";"; F.pp_close_box fmt () in let fields = FieldId.mapi (fun fid f -> (fid, f)) fields in Collections.List.iter_link (F.pp_print_space fmt) (fun (fid, f) -> print_field fid f) fields; (* Close *) F.pp_close_box fmt (); F.pp_print_space fmt (); F.pp_print_string fmt "}") let extract_type_def_enum_body (ctx : extraction_ctx) (fmt : F.formatter) (def : type_def) (def_name : string) (type_params : string list) (variants : variant list) : unit = (* We want to generate a definition which looks like this: * ``` * type list a = | Cons : a -> list a -> list a | Nil : list a * ``` * * If there isn't enough space on one line: * ``` * type s = * | Cons : a -> list a -> list a * | Nil : list a * ``` * * And if we need to write the type of a variant on several lines: * ``` * type s = * | Cons : * a -> * list a -> * list a * | Nil : list a * ``` * * Finally, it is possible to give names to the variant fields in Rust. * In this situation, we generate a definition like this: * ``` * type s = * | Cons : hd:a -> tl:list a -> list a * | Nil : list a * ``` * * Note that we already printed: `type s =` *) (* Print the variants *) let print_variant (variant_id : VariantId.id) (variant : variant) : unit = let variant_name = ctx_get_variant (AdtId def.def_id) variant_id ctx in F.pp_print_space fmt (); F.pp_open_hvbox fmt ctx.indent_incr; (* variant box *) (* `| Cons :` * Note that we really don't want any break above so we print everything * at once. *) F.pp_print_string fmt ("| " ^ variant_name ^ " :"); F.pp_print_space fmt (); let print_field (fid : FieldId.id) (f : field) (ctx : extraction_ctx) : extraction_ctx = (* Open the field box *) F.pp_open_box fmt ctx.indent_incr; (* Print the field names * ` x :` * Note that when printing fields, we register the field names as * *variables*: they don't need to be unique at the top level. *) let ctx = match f.field_name with | None -> ctx | Some field_name -> let var_id = VarId.of_int (FieldId.to_int fid) in let field_name = ctx.fmt.var_basename ctx.names_map.names_set (Some field_name) f.field_ty in let ctx, field_name = ctx_add_var field_name var_id ctx in F.pp_print_string fmt (field_name ^ " :"); F.pp_print_space fmt (); ctx in (* Print the field type *) extract_ty ctx fmt false f.field_ty; (* Print the arrow `->`*) F.pp_print_space fmt (); F.pp_print_string fmt "->"; (* Close the field box *) F.pp_close_box fmt (); F.pp_print_space fmt (); (* Return *) ctx in (* Print the fields *) let fields = FieldId.mapi (fun fid f -> (fid, f)) variant.fields in let _ = List.fold_left (fun ctx (fid, f) -> print_field fid f ctx) ctx fields in (* Print the final type *) F.pp_open_hovbox fmt 0; F.pp_print_string fmt def_name; List.iter (fun type_param -> F.pp_print_space fmt (); F.pp_print_string fmt type_param) type_params; F.pp_close_box fmt (); (* Close the variant box *) F.pp_close_box fmt () in (* Print the variants *) let variants = VariantId.mapi (fun vid v -> (vid, v)) variants in List.iter (fun (vid, v) -> print_variant vid v) variants (** Extract a type definition. Note that all the names used for extraction should already have been registered. *) let extract_type_def (ctx : extraction_ctx) (fmt : F.formatter) (qualif : type_def_qualif) (def : type_def) : unit = (* Retrieve the definition name *) let def_name = ctx_get_local_type def.def_id ctx in (* Add the type params - note that we need those bindings only for the * body translation (they are not top-level) *) let ctx_body, type_params = ctx_add_type_params def.type_params ctx in (* Add a break before *) F.pp_print_break fmt 0 0; (* Print a comment to link the extracted type to its original rust definition *) F.pp_print_string fmt ("(** [" ^ Print.name_to_string def.name ^ "] *)"); F.pp_print_space fmt (); (* Open a box for the definition, so that whenever possible it gets printed on * one line *) F.pp_open_hvbox fmt 0; (* Open a box for "type TYPE_NAME (TYPE_PARAMS) =" *) F.pp_open_hovbox fmt ctx.indent_incr; (* > "type TYPE_NAME" *) let qualif = match qualif with Type -> "type" | And -> "and" in F.pp_print_string fmt (qualif ^ " " ^ def_name); (* Print the type parameters *) if def.type_params <> [] then ( F.pp_print_space fmt (); F.pp_print_string fmt "("; List.iter (fun (p : type_var) -> let pname = ctx_get_type_var p.index ctx_body in F.pp_print_string fmt pname; F.pp_print_space fmt ()) def.type_params; F.pp_print_string fmt ":"; F.pp_print_space fmt (); F.pp_print_string fmt "Type0)"); (* Print the "=" *) F.pp_print_space fmt (); F.pp_print_string fmt "="; (* Close the box for "type TYPE_NAME (TYPE_PARAMS) =" *) F.pp_close_box fmt (); (match def.kind with | Struct fields -> extract_type_def_struct_body ctx_body fmt def fields | Enum variants -> extract_type_def_enum_body ctx_body fmt def def_name type_params variants); (* Close the box for the definition *) F.pp_close_box fmt (); (* Add breaks to insert new lines between definitions *) F.pp_print_break fmt 0 0 (** Compute the names for all the pure functions generated from a rust function (forward function and backward functions). *) let extract_fun_def_register_names (ctx : extraction_ctx) (keep_fwd : bool) (has_decreases_clause : bool) (def : pure_fun_translation) : extraction_ctx = let fwd, back_ls = def in (* Register the decrease clause, if necessary *) let ctx = if has_decreases_clause then ctx_add_decrases_clause fwd ctx else ctx in (* Register the forward function name *) let ctx = ctx_add_fun_def (keep_fwd, def) fwd ctx in (* Register the backward functions' names *) let ctx = List.fold_left (fun ctx back -> ctx_add_fun_def (keep_fwd, def) back ctx) ctx back_ls in (* Return *) ctx (** The following function factorizes the extraction of ADT values. Note that lvalues can introduce new variables: we thus return an extraction context updated with new bindings. *) let extract_adt_g_value (extract_value : extraction_ctx -> bool -> 'v -> extraction_ctx) (fmt : F.formatter) (ctx : extraction_ctx) (inside : bool) (variant_id : VariantId.id option) (field_values : 'v list) (ty : ty) : extraction_ctx = match ty with | Adt (Tuple, _) -> (* Tuple *) F.pp_print_string fmt "("; let ctx = Collections.List.fold_left_link (fun () -> F.pp_print_string fmt ","; F.pp_print_space fmt ()) (fun ctx v -> extract_value ctx false v) ctx field_values in F.pp_print_string fmt ")"; ctx | Adt (adt_id, _) -> (* "Regular" ADT *) (* We print something of the form: `Cons field0 ... fieldn`. * We could update the code to print something of the form: * `{ field0=...; ...; fieldn=...; }` in case of structures. *) let cons = match variant_id with | Some vid -> ctx_get_variant adt_id vid ctx | None -> ctx_get_struct adt_id ctx in if inside && field_values <> [] then F.pp_print_string fmt "("; F.pp_print_string fmt cons; let ctx = Collections.List.fold_left (fun ctx v -> F.pp_print_space fmt (); extract_value ctx true v) ctx field_values in if inside && field_values <> [] then F.pp_print_string fmt ")"; ctx | _ -> raise (Failure "Inconsistent typed value") (** [inside]: see [extract_ty]. As an lvalue can introduce new variables, we return an extraction context updated with new bindings. *) let rec extract_typed_lvalue (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) (v : typed_lvalue) : extraction_ctx = match v.value with | LvConcrete cv -> ctx.fmt.extract_constant_value fmt inside cv; ctx | LvVar (Var (v, _)) -> let vname = ctx.fmt.var_basename ctx.names_map.names_set v.basename v.ty in let ctx, vname = ctx_add_var vname v.id ctx in F.pp_print_string fmt vname; ctx | LvVar Dummy -> F.pp_print_string fmt "_"; ctx | LvAdt av -> let extract_value ctx inside v = extract_typed_lvalue ctx fmt inside v in extract_adt_g_value extract_value fmt ctx inside av.variant_id av.field_values v.ty let extract_place (ctx : extraction_ctx) (fmt : F.formatter) (p : place) : unit = let rec extract_projection (pl : projection) : unit = match pl with | [] -> (* No projection element left: print the variable *) let var_name = ctx_get_var p.var ctx in F.pp_print_string fmt var_name | pe :: pl -> (* Extract the interior of the projection *) extract_projection pl; (* Match on the projection element *) let def_id = match pe.pkind with | E.ProjAdt (def_id, None) -> def_id | E.ProjAdt (_, Some _) | E.ProjOption _ | E.ProjTuple _ -> (* We can't have field accesses on enumerations (variables for * the fields are introduced upon the moment we match over the * enumeration). We also forbid field access on tuples, because * we don't have the syntax to translate that... We thus * deconstruct the tuples whenever we need to have access: * `let (x, y) = p in ...` *) raise (Failure "Unreachable") in let field_name = ctx_get_field (AdtId def_id) pe.field_id ctx in (* We allow to break where the "." appears *) F.pp_print_break fmt 0 0; F.pp_print_string fmt "."; F.pp_print_string fmt field_name in extract_projection p.projection (** [inside]: see [extract_ty] *) let rec extract_typed_rvalue (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) (v : typed_rvalue) : extraction_ctx = match v.value with | RvConcrete cv -> ctx.fmt.extract_constant_value fmt inside cv; ctx | RvPlace p -> extract_place ctx fmt p; ctx | RvAdt av -> let extract_value ctx inside v = extract_typed_rvalue ctx fmt inside v in extract_adt_g_value extract_value fmt ctx inside av.variant_id av.field_values v.ty (** [inside]: see [extract_ty] *) let rec extract_texpression (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool) (e : texpression) : unit = match e.e with | Value (rv, _) -> let _ = extract_typed_rvalue ctx fmt inside rv in () | Call call -> ( match (call.func, call.args) with | Unop unop, [ arg ] -> ctx.fmt.extract_unop (extract_texpression ctx fmt) fmt inside unop arg | Binop (binop, int_ty), [ arg0; arg1 ] -> ctx.fmt.extract_binop (extract_texpression ctx fmt) fmt inside binop int_ty arg0 arg1 | Regular (fun_id, rg_id), _ -> if inside then F.pp_print_string fmt "("; (* Open a box for the function call *) F.pp_open_hovbox fmt ctx.indent_incr; (* Print the function name *) let fun_name = ctx_get_function fun_id rg_id ctx in F.pp_print_string fmt fun_name; (* Print the type parameters *) List.iter (fun ty -> F.pp_print_space fmt (); extract_ty ctx fmt true ty) call.type_params; (* Print the input values *) List.iter (fun ve -> F.pp_print_space fmt (); extract_texpression ctx fmt true ve) call.args; (* Close the box for the function call *) F.pp_close_box fmt (); (* Return *) if inside then F.pp_print_string fmt ")" | _ -> raise (Failure "Unreachable")) | Let (monadic, lv, re, next_e) -> (* Open a box for the let-binding *) F.pp_open_hovbox fmt ctx.indent_incr; let ctx = if monadic then ( (* Note that in F*, the left value of a monadic let-binding can only be * a variable *) let ctx = extract_typed_lvalue ctx fmt true lv in F.pp_print_space fmt (); F.pp_print_string fmt "<--"; F.pp_print_space fmt (); extract_texpression ctx fmt false re; F.pp_print_string fmt ";"; ctx) else ( F.pp_print_string fmt "let"; F.pp_print_space fmt (); let ctx = extract_typed_lvalue ctx fmt true lv in F.pp_print_space fmt (); F.pp_print_string fmt "="; F.pp_print_space fmt (); extract_texpression ctx fmt false re; F.pp_print_space fmt (); F.pp_print_string fmt "in"; ctx) in (* Close the box for the let-binding *) F.pp_close_box fmt (); (* Print the next expression *) F.pp_print_space fmt (); extract_texpression ctx fmt inside next_e | Switch (scrut, body) -> ( match body with | If (e_then, e_else) -> (* Open a box for the whole `if ... then ... else ...` *) F.pp_open_hvbox fmt 0; (* Open a box for the `if` *) F.pp_open_hovbox fmt ctx.indent_incr; F.pp_print_string fmt "if"; F.pp_print_space fmt (); extract_texpression ctx fmt false scrut; (* Close the box for the `if` *) F.pp_close_box fmt (); (* Extract the branches *) let extract_branch (is_then : bool) (e_branch : texpression) : unit = F.pp_print_space fmt (); (* Open a box for the then/else+branch *) F.pp_open_hovbox fmt ctx.indent_incr; let then_or_else = if is_then then "then" else "else" in F.pp_print_string fmt then_or_else; F.pp_print_space fmt (); (* Open a box for the branch *) F.pp_open_hvbox fmt 0; (* Print the `begin` if necessary *) let parenth = PureUtils.expression_requires_parentheses e_branch in if parenth then ( F.pp_print_string fmt "begin"; F.pp_print_space fmt ()); (* Print the branch expression *) extract_texpression ctx fmt false e_branch; (* Close the `begin ... end ` *) if parenth then ( F.pp_print_space fmt (); F.pp_print_string fmt "end"); (* Close the box for the branch *) F.pp_close_box fmt (); (* Close the box for the then/else+branch *) F.pp_close_box fmt () in extract_branch true e_then; extract_branch false e_else; (* Close the box for the whole `if ... then ... else ...` *) F.pp_close_box fmt () | Match branches -> (* Open a box for the whole match *) F.pp_open_hvbox fmt 0; (* Open a box for the `match ... with` *) F.pp_open_hovbox fmt ctx.indent_incr; (* Print the `match ... with` *) F.pp_print_string fmt "begin match"; F.pp_print_space fmt (); extract_texpression ctx fmt false scrut; F.pp_print_space fmt (); F.pp_print_string fmt "with"; (* Close the box for the `match ... with` *) F.pp_close_box fmt (); (* Extract the branches *) let extract_branch (br : match_branch) : unit = F.pp_print_space fmt (); (* Open a box for the pattern+branch *) F.pp_open_hovbox fmt ctx.indent_incr; F.pp_print_string fmt "|"; (* Print the pattern *) F.pp_print_space fmt (); let ctx = extract_typed_lvalue ctx fmt false br.pat in F.pp_print_space fmt (); F.pp_print_string fmt "->"; F.pp_print_space fmt (); (* Open a box for the branch *) F.pp_open_hvbox fmt 0; (* Print the branch itself *) extract_texpression ctx fmt false br.branch; (* Close the box for the branch *) F.pp_close_box fmt (); (* Close the box for the pattern+branch *) F.pp_close_box fmt () in List.iter extract_branch branches; (* End the match *) F.pp_print_space fmt (); F.pp_print_string fmt "end"; (* Close the box for the whole match *) F.pp_close_box fmt ()) | Meta (_, e) -> extract_texpression ctx fmt inside e (** A small utility to print the parameters of a function signature. We return two contexts: - the context augmented with bindings for the type parameters - the previous context augmented with bindings for the input values *) let extract_fun_parameters (ctx : extraction_ctx) (fmt : F.formatter) (def : fun_def) : extraction_ctx * extraction_ctx = (* Add the type parameters - note that we need those bindings only for the * body translation (they are not top-level) *) let ctx, _ = ctx_add_type_params def.signature.type_params ctx in (* Print the parameters - rk.: we should have filtered the functions * with no input parameters *) (* The type parameters *) if def.signature.type_params <> [] then ( (* Open a box for the type parameters *) F.pp_open_hovbox fmt 0; F.pp_print_string fmt "("; List.iter (fun (p : type_var) -> let pname = ctx_get_type_var p.index ctx in F.pp_print_string fmt pname; F.pp_print_space fmt ()) def.signature.type_params; F.pp_print_string fmt ":"; F.pp_print_space fmt (); F.pp_print_string fmt "Type0)"; (* Close the box for the type parameters *) F.pp_close_box fmt (); F.pp_print_space fmt ()); (* The input parameters - note that doing this adds bindings to the context *) let ctx_body = List.fold_left (fun ctx (lv : typed_lvalue) -> (* Open a box for the input parameter *) F.pp_open_hovbox fmt 0; F.pp_print_string fmt "("; let ctx = extract_typed_lvalue ctx fmt false lv in F.pp_print_space fmt (); F.pp_print_string fmt ":"; F.pp_print_space fmt (); extract_ty ctx fmt false lv.ty; F.pp_print_string fmt ")"; (* Close the box for the input parameters *) F.pp_close_box fmt (); F.pp_print_space fmt (); ctx) ctx def.inputs_lvs in (ctx, ctx_body) (** Extract a decrease clause function template body. In order to help the user, we can generate a template for the functions required by the decreases clauses. We simply generate definitions of the following form in a separate file: ``` let f_decrease (t : Type0) (x : t) : nat = admit() ``` Where the translated functions for `f` look like this: ``` let f_fwd (t : Type0) (x : t) : Tot ... (decreases (f_decrease t x)) = ... ``` *) let extract_template_decreases_clause (ctx : extraction_ctx) (fmt : F.formatter) (def : fun_def) : unit = (* Retrieve the function name *) let def_name = ctx_get_decreases_clause def.def_id ctx in (* Add a break before *) F.pp_print_break fmt 0 0; (* Print a comment to link the extracted type to its original rust definition *) F.pp_print_string fmt ("(** [" ^ Print.name_to_string def.basename ^ "]: decreases clause *)"); F.pp_print_space fmt (); (* Open a box for the definition, so that whenever possible it gets printed on * one line *) F.pp_open_hvbox fmt 0; (* Add the `unfold` keyword *) F.pp_print_string fmt "unfold"; F.pp_print_space fmt (); (* Open a box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *) F.pp_open_hvbox fmt ctx.indent_incr; (* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *) F.pp_open_hovbox fmt ctx.indent_incr; (* > "let FUN_NAME" *) F.pp_print_string fmt ("let " ^ def_name); F.pp_print_space fmt (); (* Extract the parameters *) let _, _ = extract_fun_parameters ctx fmt def in F.pp_print_string fmt ":"; (* Print the signature *) F.pp_print_space fmt (); F.pp_print_string fmt "nat"; (* Print the "=" *) F.pp_print_space fmt (); F.pp_print_string fmt "="; (* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *) F.pp_close_box fmt (); F.pp_print_space fmt (); (* Print the "admit ()" *) F.pp_print_string fmt "admit ()"; (* Close the box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *) F.pp_close_box fmt (); (* Close the box for the whole definition *) F.pp_close_box fmt (); (* Add breaks to insert new lines between definitions *) F.pp_print_break fmt 0 0 (** Extract a function definition. Note that all the names used for extraction should already have been registered. We take the definition of the forward translation as parameter (which is equal to the definition to extract, if we extract a forward function) because it is useful for the decrease clause. *) let extract_fun_def (ctx : extraction_ctx) (fmt : F.formatter) (qualif : fun_def_qualif) (has_decreases_clause : bool) (fwd_def : fun_def) (def : fun_def) : unit = (* Retrieve the function name *) let def_name = ctx_get_local_function def.def_id def.back_id ctx in (* (* Add the type parameters - note that we need those bindings only for the * body translation (they are not top-level) *) let ctx, _ = ctx_add_type_params def.signature.type_params ctx in *) (* Add a break before *) F.pp_print_break fmt 0 0; (* Print a comment to link the extracted type to its original rust definition *) F.pp_print_string fmt ("(** [" ^ Print.name_to_string def.basename ^ "] *)"); F.pp_print_space fmt (); (* Open a box for the definition, so that whenever possible it gets printed on * one line *) F.pp_open_hvbox fmt ctx.indent_incr; (* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *) F.pp_open_hovbox fmt ctx.indent_incr; (* > "let FUN_NAME" *) let qualif = match qualif with Let -> "let" | LetRec -> "let rec" | And -> "and" in F.pp_print_string fmt (qualif ^ " " ^ def_name); F.pp_print_space fmt (); (* Open a box for "(PARAMS) : EFFECT =" *) F.pp_open_hvbox fmt 0; (* Open a box for "(PARAMS)" *) F.pp_open_hovbox fmt 0; let ctx, ctx_body = extract_fun_parameters ctx fmt def in (* Close the box for "(PARAMS)" *) F.pp_close_box fmt (); (* Print the return type - note that we have to be careful when * printing the input values for the decrease clause, because * it introduces bindings in the context... We thus "forget" * the bindings we introduced above. * TODO: figure out a cleaner way *) let _ = F.pp_print_string fmt ":"; F.pp_print_space fmt (); (* Open a box for the EFFECT *) F.pp_open_hvbox fmt 0; (* Open a box for the return type *) F.pp_open_hovbox fmt ctx.indent_incr; (* Print the return type *) (* `Tot` *) if has_decreases_clause then ( F.pp_print_string fmt "Tot"; F.pp_print_space fmt ()); extract_ty ctx fmt has_decreases_clause (Collections.List.to_cons_nil def.signature.outputs); (* Close the box for the return type *) F.pp_close_box fmt (); (* Print the decrease clause *) if has_decreases_clause then ( F.pp_print_space fmt (); (* Open a box for the decrease clause *) F.pp_open_hovbox fmt 0; (* *) F.pp_print_string fmt "(decreases"; F.pp_print_space fmt (); F.pp_print_string fmt "("; (* The name of the decrease clause *) let decr_name = ctx_get_decreases_clause def.def_id ctx in F.pp_print_string fmt decr_name; (* Print the type parameters *) List.iter (fun (p : type_var) -> let pname = ctx_get_type_var p.index ctx in F.pp_print_space fmt (); F.pp_print_string fmt pname) def.signature.type_params; (* Print the input values: we have to be careful here to print * only the input values which are in common with the *forward* * function (the additional input values "given back" to the * backward functions have no influence on termination: we thus * share the decrease clauses between the forward and the backward * functions) *) let inputs_lvs = Collections.List.prefix (List.length fwd_def.inputs_lvs) def.inputs_lvs in let _ = List.fold_left (fun ctx (lv : typed_lvalue) -> F.pp_print_space fmt (); let ctx = extract_typed_lvalue ctx fmt false lv in ctx) ctx inputs_lvs in F.pp_print_string fmt "))"; (* Close the box for the decrease clause *) F.pp_close_box fmt ()); (* Close the box for the EFFECT *) F.pp_close_box fmt () in (* Print the "=" *) F.pp_print_space fmt (); F.pp_print_string fmt "="; (* Close the box for "(PARAMS) : EFFECT =" *) F.pp_close_box fmt (); (* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *) F.pp_close_box fmt (); F.pp_print_space fmt (); (* Open a box for the body *) F.pp_open_hvbox fmt 0; (* Extract the body *) let _ = extract_texpression ctx_body fmt false def.body in (* Close the box for the body *) F.pp_close_box fmt (); (* Close the box for the definition *) F.pp_close_box fmt (); (* Add breaks to insert new lines between definitions *) F.pp_print_break fmt 0 0 (** Extract a unit test, if the function is a unit function (takes no parameters, returns unit). A unit test simply checks that the function normalizes to `Return ()`: ``` let _ = assert_norm (FUNCTION () = Return ()) ``` *) let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter) (def : fun_def) : unit = (* We only insert unit tests for forward functions *) assert (def.back_id = None); (* Check if this is a unit function *) let sg = def.signature in if sg.type_params = [] && (sg.inputs = [ unit_ty ] || sg.inputs = []) && sg.outputs = [ mk_result_ty unit_ty ] then ( (* Add a break before *) F.pp_print_break fmt 0 0; (* Print a comment *) F.pp_print_string fmt ("(** Unit test for [" ^ Print.name_to_string def.basename ^ "] *)"); F.pp_print_space fmt (); (* Open a box for the test *) F.pp_open_hovbox fmt ctx.indent_incr; (* Print the test *) F.pp_print_string fmt "let _ ="; F.pp_print_space fmt (); F.pp_print_string fmt "assert_norm"; F.pp_print_space fmt (); F.pp_print_string fmt "("; let fun_name = ctx_get_local_function def.def_id def.back_id ctx in F.pp_print_string fmt fun_name; if sg.inputs <> [] then ( F.pp_print_space fmt (); F.pp_print_string fmt "()"); F.pp_print_space fmt (); F.pp_print_string fmt "="; F.pp_print_space fmt (); let success = ctx_get_variant (Assumed Result) result_return_id ctx in F.pp_print_string fmt (success ^ " ())"); (* Close the box for the test *) F.pp_close_box fmt (); (* Add a break after *) F.pp_print_break fmt 0 0) else (* Do nothing *) ()