(** This module defines various utilities to write the interpretation functions in continuation passing style. *) module T = Types module V = Values module C = Contexts (** Result of evaluating a statement *) type statement_eval_res = | Unit | Break of int | Continue of int | Return | Panic (** Synthesized expresssion - dummy for now *) type sexpr = SOne | SList of sexpr list type eval_result = sexpr option type m_fun = C.eval_ctx -> eval_result (** Monadic function *) type cm_fun = m_fun -> m_fun (** Monadic function with continuation *) type typed_value_cm_fun = V.typed_value -> cm_fun (** Monadic function with continuation and receiving a typed value *) (** Convert a unit function to a cm function *) let unit_to_cm_fun (f : C.eval_ctx -> unit) : cm_fun = fun cf ctx -> f ctx; cf ctx (** *) let update_to_cm_fun (f : C.eval_ctx -> C.eval_ctx) : cm_fun = fun cf ctx -> let ctx = f ctx in cf ctx (** Composition of functions taking continuations as paramters. We tried to make this as general as possible. *) let comp (f : 'c -> 'd -> 'e) (g : ('a -> 'b) -> 'c) : ('a -> 'b) -> 'd -> 'e = fun cf ctx -> f (g cf) ctx let comp_unit (f : cm_fun) (g : C.eval_ctx -> unit) : cm_fun = comp f (unit_to_cm_fun g) let comp_update (f : cm_fun) (g : C.eval_ctx -> C.eval_ctx) : cm_fun = comp f (update_to_cm_fun g) (** This is just a test, to check that [comp] is general enough to handle a case where a function must compute a value and give it to the continuation. It happens for functions like [eval_operand]. Keeping this here also makes it a good reference, when one wants to figure out the signatures he should use for such a composition. *) let comp_ret_val (f : (V.typed_value -> m_fun) -> m_fun) (g : m_fun -> V.typed_value -> m_fun) : cm_fun = comp f g let apply (f : cm_fun) (g : m_fun) : m_fun = fun ctx -> f g ctx let id_cm_fun : cm_fun = fun cf ctx -> cf ctx