(** This module defines various utilities to write the interpretation functions in continuation passing style. *) module T = Types module V = Values module C = Contexts (** TODO: change the name *) type eval_error = EPanic (** Result of evaluating a statement *) type statement_eval_res = | Unit | Break of int | Continue of int | Return | Panic (** Synthesized expresssion - dummy for now *) type sexpr = SOne | SList of sexpr list type eval_result = sexpr option type m_fun = C.eval_ctx -> eval_result (** Continuation function *) type cm_fun = m_fun -> m_fun (** Continuation taking another continuation as parameter *) type typed_value_m_fun = V.typed_value -> m_fun (** Continuation taking a typed value as parameter - TODO: use more *) type typed_value_cm_fun = V.typed_value -> cm_fun (** Continuation taking another continuation as parameter and a typed value as parameter. *) type st_cm_fun = statement_eval_res -> cm_fun (** Type of a continuation used when evaluating a statement *) (** Convert a unit function to a cm function *) let unit_to_cm_fun (f : C.eval_ctx -> unit) : cm_fun = fun cf ctx -> f ctx; cf ctx (** *) let update_to_cm_fun (f : C.eval_ctx -> C.eval_ctx) : cm_fun = fun cf ctx -> let ctx = f ctx in cf ctx (** Composition of functions taking continuations as paramters. We tried to make this as general as possible. *) let comp (f : 'c -> 'd -> 'e) (g : ('a -> 'b) -> 'c) : ('a -> 'b) -> 'd -> 'e = fun cf ctx -> f (g cf) ctx let comp_unit (f : cm_fun) (g : C.eval_ctx -> unit) : cm_fun = comp f (unit_to_cm_fun g) let comp_update (f : cm_fun) (g : C.eval_ctx -> C.eval_ctx) : cm_fun = comp f (update_to_cm_fun g) (** This is just a test, to check that [comp] is general enough to handle a case where a function must compute a value and give it to the continuation. It happens for functions like [eval_operand]. Keeping this here also makes it a good reference, when one wants to figure out the signatures he should use for such a composition. *) let comp_ret_val (f : (V.typed_value -> m_fun) -> m_fun) (g : m_fun -> V.typed_value -> m_fun) : cm_fun = comp f g let apply (f : cm_fun) (g : m_fun) : m_fun = fun ctx -> f g ctx let id_cm_fun : cm_fun = fun cf ctx -> cf ctx (** If we have a list of [inputs] of type `'a list` and a function [f] which evaluates one element of type `'a` to compute a result of type `'b` before giving it to a continuation, the following function performs a fold operation: it evaluates all the inputs one by one by accumulating the results in a list, and gives the list to a continuation. Note that we make sure that the results are listed in the order in which they were computed (the first element of the list is the result of applying [f] to the first element of the inputs). *) let fold_left_apply_continuation (f : 'a -> ('b -> 'c -> 'd) -> 'c -> 'd) (inputs : 'a list) (cf : 'b list -> 'c -> 'd) : 'c -> 'd = let rec eval_list (inputs : 'a list) (cf : 'b list -> 'c -> 'd) (outputs : 'b list) : 'c -> 'd = fun ctx -> match inputs with | [] -> cf (List.rev outputs) ctx | x :: inputs -> comp (f x) (fun cf v -> eval_list inputs cf (v :: outputs)) cf ctx in eval_list inputs cf [] (** Unit test/example for [fold_left_apply_continuation] *) let _ = fold_left_apply_continuation (fun x cf () -> cf (10 + x) ()) [ 0; 1; 2; 3; 4 ] (fun values () -> assert (values = [ 10; 11; 12; 13; 14 ])) ()