(** The following file redefines several modules like Map or Set. *) module F = Format module List = struct include List (** Split a list at a given index. [split_at ls i] splits [ls] into two lists where the first list has length [i]. Raise [Failure] if the list is too short. *) let rec split_at (ls : 'a list) (i : int) = if i < 0 then raise (Invalid_argument "split_at take positive integers") else if i = 0 then ([], ls) else match ls with | [] -> raise (Failure "The int given to split_at should be <= the list's length") | x :: ls' -> let ls1, ls2 = split_at ls' (i - 1) in (x :: ls1, ls2) (** Pop the last element of a list Raise [Failure] if the list is empty. *) let rec pop_last (ls : 'a list) : 'a list * 'a = match ls with | [] -> raise (Failure "The list is empty") | [ x ] -> ([], x) | x :: ls -> let ls, last = pop_last ls in (x :: ls, last) (** Return the n first elements of the list *) let prefix (n : int) (ls : 'a list) : 'a list = fst (split_at ls n) (** Iter and link the iterations. Iterate over a list, but call a function between every two elements (but not before the first element, and not after the last). *) let iter_link (link : unit -> unit) (f : 'a -> unit) (ls : 'a list) : unit = let rec iter ls = match ls with | [] -> () | [ x ] -> f x | x :: y :: ls -> f x; link (); iter (y :: ls) in iter ls (** Fold and link the iterations. Similar to {!iter_link} but for fold left operations. *) let fold_left_link (link : unit -> unit) (f : 'a -> 'b -> 'a) (init : 'a) (ls : 'b list) : 'a = let rec fold (acc : 'a) (ls : 'b list) : 'a = match ls with | [] -> acc | [ x ] -> f acc x | x :: y :: ls -> let acc = f acc x in link (); fold acc (y :: ls) in fold init ls let to_cons_nil (ls : 'a list) : 'a = match ls with | [ x ] -> x | _ -> raise (Failure "The list should have length exactly one") let pop (ls : 'a list) : 'a * 'a list = match ls with | x :: ls' -> (x, ls') | _ -> raise (Failure "The list should have length > 0") end module type OrderedType = sig include Map.OrderedType val to_string : t -> string val pp_t : Format.formatter -> t -> unit val show_t : t -> string end (** Ordered string *) module OrderedString : OrderedType with type t = string = struct include String let to_string s = s let pp_t fmt s = Format.pp_print_string fmt s let show_t s = s end module type Map = sig include Map.S val add_list : (key * 'a) list -> 'a t -> 'a t val of_list : (key * 'a) list -> 'a t (** "Simple" pretty printing function. Is useful when we need to customize a bit [show_t], but without using something as burdensome as [pp_t]. [to_string (Some indent) m] prints [m] by breaking line after every binding and inserting [indent]. *) val to_string : string option -> ('a -> string) -> 'a t -> string val pp : (Format.formatter -> 'a -> unit) -> Format.formatter -> 'a t -> unit val show : ('a -> string) -> 'a t -> string end module MakeMap (Ord : OrderedType) : Map with type key = Ord.t = struct module Map = Map.Make (Ord) include Map let add_list bl m = List.fold_left (fun s (key, e) -> add key e s) m bl let of_list bl = add_list bl empty let to_string indent_opt a_to_string m = let indent, break = match indent_opt with Some indent -> (indent, "\n") | None -> ("", " ") in let sep = "," ^ break in let ls = Map.fold (fun key v ls -> (indent ^ Ord.to_string key ^ " -> " ^ a_to_string v) :: ls) m [] in match ls with | [] -> "{}" | _ -> "{" ^ break ^ String.concat sep (List.rev ls) ^ break ^ "}" let pp (pp_a : Format.formatter -> 'a -> unit) (fmt : Format.formatter) (m : 'a t) : unit = let pp_string = F.pp_print_string fmt in let pp_space () = F.pp_print_space fmt () in pp_string "{"; F.pp_open_box fmt 2; Map.iter (fun key x -> Ord.pp_t fmt key; pp_space (); pp_string "->"; pp_space (); pp_a fmt x; pp_string ","; F.pp_print_break fmt 1 0) m; F.pp_close_box fmt (); F.pp_print_break fmt 0 0; pp_string "}" let show show_a m = to_string None show_a m end module type Set = sig include Set.S val add_list : elt list -> t -> t val of_list : elt list -> t (** "Simple" pretty printing function. Is useful when we need to customize a bit [show_t], but without using something as burdensome as [pp_t]. [to_string (Some indent) s] prints [s] by breaking line after every element and inserting [indent]. *) val to_string : string option -> t -> string val pp : Format.formatter -> t -> unit val show : t -> string val pairwise_distinct : elt list -> bool end module MakeSet (Ord : OrderedType) : Set with type elt = Ord.t = struct module Set = Set.Make (Ord) include Set let add_list bl s = List.fold_left (fun s e -> add e s) s bl let of_list bl = add_list bl empty let to_string indent_opt m = let indent, break = match indent_opt with Some indent -> (indent, "\n") | None -> ("", " ") in let sep = "," ^ break in let ls = Set.fold (fun v ls -> (indent ^ Ord.to_string v) :: ls) m [] in match ls with | [] -> "{}" | _ -> "{" ^ break ^ String.concat sep (List.rev ls) ^ break ^ "}" let pp (fmt : Format.formatter) (m : t) : unit = let pp_string = F.pp_print_string fmt in pp_string "{"; F.pp_open_box fmt 2; Set.iter (fun x -> Ord.pp_t fmt x; pp_string ","; F.pp_print_break fmt 1 0) m; F.pp_close_box fmt (); F.pp_print_break fmt 0 0; pp_string "}" let show s = to_string None s let pairwise_distinct ls = let s = ref empty in let rec check ls = match ls with | [] -> true | x :: ls' -> if mem x !s then false else ( s := add x !s; check ls') in check ls end (** A map where the bindings are injective (i.e., if two keys are distinct, their bindings are distinct). This is useful for instance when generating mappings from our internal identifiers to names (i.e., strings) when generating code, in order to make sure that we don't have potentially dangerous collisions. *) module type InjMap = sig type key type elem type t val empty : t val is_empty : t -> bool val mem : key -> t -> bool val add : key -> elem -> t -> t val singleton : key -> elem -> t val remove : key -> t -> t val compare : (elem -> elem -> int) -> t -> t -> int val equal : (elem -> elem -> bool) -> t -> t -> bool val iter : (key -> elem -> unit) -> t -> unit val fold : (key -> elem -> 'b -> 'b) -> t -> 'b -> 'b val for_all : (key -> elem -> bool) -> t -> bool val exists : (key -> elem -> bool) -> t -> bool val filter : (key -> elem -> bool) -> t -> t val partition : (key -> elem -> bool) -> t -> t * t val cardinal : t -> int val bindings : t -> (key * elem) list val min_binding : t -> key * elem val min_binding_opt : t -> (key * elem) option val max_binding : t -> key * elem val max_binding_opt : t -> (key * elem) option val choose : t -> key * elem val choose_opt : t -> (key * elem) option val split : key -> t -> t * elem option * t val find : key -> t -> elem val find_opt : key -> t -> elem option val find_first : (key -> bool) -> t -> key * elem val find_first_opt : (key -> bool) -> t -> (key * elem) option val find_last : (key -> bool) -> t -> key * elem val find_last_opt : (key -> bool) -> t -> (key * elem) option val to_seq : t -> (key * elem) Seq.t val to_seq_from : key -> t -> (key * elem) Seq.t val add_seq : (key * elem) Seq.t -> t -> t val of_seq : (key * elem) Seq.t -> t val add_list : (key * elem) list -> t -> t val of_list : (key * elem) list -> t end (** See {!InjMap} *) module MakeInjMap (Key : OrderedType) (Elem : OrderedType) : InjMap with type key = Key.t with type elem = Elem.t = struct module Map = MakeMap (Key) module Set = MakeSet (Elem) type key = Key.t type elem = Elem.t type t = { map : elem Map.t; elems : Set.t } let empty = { map = Map.empty; elems = Set.empty } let is_empty m = Map.is_empty m.map let mem k m = Map.mem k m.map let add k e m = assert (not (Set.mem e m.elems)); { map = Map.add k e m.map; elems = Set.add e m.elems } let singleton k e = { map = Map.singleton k e; elems = Set.singleton e } let remove k m = match Map.find_opt k m.map with | None -> m | Some x -> { map = Map.remove k m.map; elems = Set.remove x m.elems } let compare f m1 m2 = Map.compare f m1.map m2.map let equal f m1 m2 = Map.equal f m1.map m2.map let iter f m = Map.iter f m.map let fold f m x = Map.fold f m.map x let for_all f m = Map.for_all f m.map let exists f m = Map.exists f m.map (** Small helper *) let bindings_to_elems_set (bls : (key * elem) list) : Set.t = let elems = List.map snd bls in let elems = List.fold_left (fun s e -> Set.add e s) Set.empty elems in elems (** Small helper *) let map_to_elems_set (map : elem Map.t) : Set.t = bindings_to_elems_set (Map.bindings map) (** Small helper *) let map_to_t (map : elem Map.t) : t = let elems = map_to_elems_set map in { map; elems } let filter f m = let map = Map.filter f m.map in let elems = map_to_elems_set map in { map; elems } let partition f m = let map1, map2 = Map.partition f m.map in (map_to_t map1, map_to_t map2) let cardinal m = Map.cardinal m.map let bindings m = Map.bindings m.map let min_binding m = Map.min_binding m.map let min_binding_opt m = Map.min_binding_opt m.map let max_binding m = Map.max_binding m.map let max_binding_opt m = Map.max_binding_opt m.map let choose m = Map.choose m.map let choose_opt m = Map.choose_opt m.map let split k m = let l, data, r = Map.split k m.map in let l = map_to_t l in let r = map_to_t r in (l, data, r) let find k m = Map.find k m.map let find_opt k m = Map.find_opt k m.map let find_first k m = Map.find_first k m.map let find_first_opt k m = Map.find_first_opt k m.map let find_last k m = Map.find_last k m.map let find_last_opt k m = Map.find_last_opt k m.map let to_seq m = Map.to_seq m.map let to_seq_from k m = Map.to_seq_from k m.map let rec add_seq s m = (* Note that it is important to check that we don't add bindings mapping * to the same element *) match s () with | Seq.Nil -> m | Seq.Cons ((k, e), s) -> let m = add k e m in add_seq s m let of_seq s = add_seq s empty let add_list ls m = List.fold_left (fun m (key, elem) -> add key elem m) m ls let of_list ls = add_list ls empty end