open Interpreter open Expressions open Types open Values open LlbcAst open Contexts module SA = SymbolicAst module Micro = PureMicroPasses open TranslateCore (** The local logger *) let log = TranslateCore.log (** The result of running the symbolic interpreter on a function: - the list of symbolic values used for the input values - the generated symbolic AST *) type symbolic_fun_translation = symbolic_value list * SA.expression (** Execute the symbolic interpreter on a function to generate a list of symbolic ASTs, for the forward function and the backward functions. *) let translate_function_to_symbolics (trans_ctx : trans_ctx) (fdef : fun_decl) : symbolic_fun_translation option = (* Debug *) log#ldebug (lazy ("translate_function_to_symbolics: " ^ name_to_string trans_ctx fdef.name)); match fdef.body with | None -> None | Some _ -> (* Evaluate *) let synthesize = true in let inputs, symb = evaluate_function_symbolic synthesize trans_ctx fdef in Some (inputs, Option.get symb) (** Translate a function, by generating its forward and backward translations. [fun_sigs]: maps the forward/backward functions to their signatures. In case of backward functions, we also provide names for the outputs. TODO: maybe we should introduce a record for this. *) let translate_function_to_pure (trans_ctx : trans_ctx) (pure_type_decls : Pure.type_decl Pure.TypeDeclId.Map.t) (fun_dsigs : Pure.decomposed_fun_sig FunDeclId.Map.t) (fdef : fun_decl) : pure_fun_translation_no_loops = (* Debug *) log#ldebug (lazy ("translate_function_to_pure: " ^ name_to_string trans_ctx fdef.name)); let def_id = fdef.def_id in (* Compute the symbolic ASTs, if the function is transparent *) let symbolic_trans = translate_function_to_symbolics trans_ctx fdef in (* Convert the symbolic ASTs to pure ASTs: *) (* Initialize the context *) let sv_to_var = SymbolicValueId.Map.empty in let var_counter = Pure.VarId.generator_zero in let state_var, var_counter = Pure.VarId.fresh var_counter in let fuel0, var_counter = Pure.VarId.fresh var_counter in let fuel, var_counter = Pure.VarId.fresh var_counter in let calls = FunCallId.Map.empty in let abstractions = AbstractionId.Map.empty in let recursive_type_decls = TypeDeclId.Set.of_list (List.filter_map (fun (tid, g) -> match g with | Charon.GAst.NonRecGroup _ -> None | RecGroup _ -> Some tid) (TypeDeclId.Map.bindings trans_ctx.type_ctx.type_decls_groups)) in let type_ctx = { SymbolicToPure.type_infos = trans_ctx.type_ctx.type_infos; llbc_type_decls = trans_ctx.type_ctx.type_decls; type_decls = pure_type_decls; recursive_decls = recursive_type_decls; } in let fun_ctx = { SymbolicToPure.llbc_fun_decls = trans_ctx.fun_ctx.fun_decls; fun_infos = trans_ctx.fun_ctx.fun_infos; regions_hierarchies = trans_ctx.fun_ctx.regions_hierarchies; } in let global_ctx = { SymbolicToPure.llbc_global_decls = trans_ctx.global_ctx.global_decls } in (* Compute the set of loops, and find better ids for them (starting at 0). Note that we only need to explore the forward function: the backward functions should contain the same set of loops. *) let loop_ids_map = match symbolic_trans with | None -> LoopId.Map.empty | Some (_, ast) -> let m = ref LoopId.Map.empty in let _, fresh_loop_id = Pure.LoopId.fresh_stateful_generator () in let visitor = object inherit [_] SA.iter_expression as super method! visit_loop env loop = let _ = match LoopId.Map.find_opt loop.loop_id !m with | Some _ -> () | None -> m := LoopId.Map.add loop.loop_id (fresh_loop_id ()) !m in super#visit_loop env loop end in visitor#visit_expression () ast; !m in let sg = SymbolicToPure.translate_fun_sig_from_decl_to_decomposed trans_ctx fdef in let regions_hierarchy = LlbcAstUtils.FunIdMap.find (FRegular def_id) fun_ctx.regions_hierarchies in let var_counter, back_state_vars = if !Config.return_back_funs then (var_counter, []) else List.fold_left_map (fun var_counter (region_vars : region_var_group) -> let gid = region_vars.id in let var, var_counter = Pure.VarId.fresh var_counter in (var_counter, (gid, var))) var_counter regions_hierarchy in let back_state_vars = RegionGroupId.Map.of_list back_state_vars in let ctx = { decls_ctx = trans_ctx; SymbolicToPure.bid = None; sg; fun_dsigs; (* Will need to be updated for the backward functions *) sv_to_var; var_counter = ref var_counter; state_var; back_state_vars; fuel0; fuel; type_ctx; fun_ctx; global_ctx; trait_decls_ctx = trans_ctx.trait_decls_ctx.trait_decls; trait_impls_ctx = trans_ctx.trait_impls_ctx.trait_impls; fun_decl = fdef; forward_inputs = []; (* Initialized just below *) backward_inputs_no_state = RegionGroupId.Map.empty; (* Initialized just below *) backward_inputs_with_state = RegionGroupId.Map.empty; backward_outputs = None; (* Empty for now *) calls; abstractions; loop_id = None; inside_loop = false; loop_ids_map; loops = Pure.LoopId.Map.empty; } in (* Add the forward inputs (the initialized input variables for the forward function) *) let ctx = match (fdef.body, symbolic_trans) with | None, None -> ctx | Some body, Some (input_svs, _) -> let forward_input_vars = LlbcAstUtils.fun_body_get_input_vars body in let forward_input_varnames = List.map (fun (v : var) -> v.name) forward_input_vars in let input_svs = List.combine forward_input_varnames input_svs in let ctx, forward_inputs = SymbolicToPure.fresh_named_vars_for_symbolic_values input_svs ctx in { ctx with forward_inputs } | _ -> raise (Failure "Unreachable") in (* Add the backward inputs *) let ctx, backward_inputs_no_state, backward_inputs_with_state = if !Config.return_back_funs then (ctx, [], []) else let ctx, inputs_no_with_state = List.fold_left_map (fun ctx (region_vars : region_var_group) -> let gid = region_vars.id in let back_sg = RegionGroupId.Map.find gid sg.back_sg in let ctx, no_state = SymbolicToPure.fresh_vars back_sg.inputs_no_state ctx in let ctx, with_state = SymbolicToPure.fresh_vars back_sg.inputs ctx in (ctx, ((gid, no_state), (gid, with_state)))) ctx regions_hierarchy in let inputs_no_state, inputs_with_state = List.split inputs_no_with_state in (ctx, inputs_no_state, inputs_with_state) in let backward_inputs_no_state = RegionGroupId.Map.of_list backward_inputs_no_state in let backward_inputs_with_state = RegionGroupId.Map.of_list backward_inputs_with_state in let ctx = { ctx with backward_inputs_no_state; backward_inputs_with_state } in (* Translate the forward function *) let pure_forward = match symbolic_trans with | None -> SymbolicToPure.translate_fun_decl ctx None | Some (_, ast) -> SymbolicToPure.translate_fun_decl ctx (Some ast) in (* Translate the backward functions, if we split the forward and backward functions *) let translate_backward (rg : region_var_group) : Pure.fun_decl = (* For the backward inputs/outputs initialization: we use the fact that * there are no nested borrows for now, and so that the region groups * can't have parents *) assert (rg.parents = []); let back_id = rg.id in match symbolic_trans with | None -> (* Initialize the context *) let ctx = { ctx with bid = Some back_id } in (* Translate *) SymbolicToPure.translate_fun_decl ctx None | Some (_, symbolic) -> (* Initialize the context *) let ctx = { ctx with bid = Some back_id } in (* Translate *) SymbolicToPure.translate_fun_decl ctx (Some symbolic) in let pure_backwards = if !Config.return_back_funs then [] else List.map translate_backward regions_hierarchy in (* Return *) (pure_forward, pure_backwards) (* TODO: factor out the return type *) let translate_crate_to_pure (crate : crate) : trans_ctx * Pure.type_decl list * pure_fun_translation list * Pure.trait_decl list * Pure.trait_impl list = (* Debug *) log#ldebug (lazy "translate_crate_to_pure"); (* Compute the translation context *) let trans_ctx = compute_contexts crate in (* Translate all the type definitions *) let type_decls = SymbolicToPure.translate_type_decls trans_ctx in (* Compute the type definition map *) let type_decls_map = Pure.TypeDeclId.Map.of_list (List.map (fun (def : Pure.type_decl) -> (def.def_id, def)) type_decls) in (* Compute the decomposed fun sigs for the whole crate *) let fun_dsigs = FunDeclId.Map.of_list (List.map (fun (fdef : LlbcAst.fun_decl) -> ( fdef.def_id, SymbolicToPure.translate_fun_sig_from_decl_to_decomposed trans_ctx fdef )) (FunDeclId.Map.values crate.fun_decls)) in (* Translate all the *transparent* functions *) let pure_translations = List.map (translate_function_to_pure trans_ctx type_decls_map fun_dsigs) (FunDeclId.Map.values crate.fun_decls) in (* Translate the trait declarations *) let trait_decls = List.map (SymbolicToPure.translate_trait_decl trans_ctx) (TraitDeclId.Map.values trans_ctx.trait_decls_ctx.trait_decls) in (* Translate the trait implementations *) let trait_impls = List.map (SymbolicToPure.translate_trait_impl trans_ctx) (TraitImplId.Map.values trans_ctx.trait_impls_ctx.trait_impls) in (* Apply the micro-passes *) let pure_translations = Micro.apply_passes_to_pure_fun_translations trans_ctx pure_translations in (* Return *) (trans_ctx, type_decls, pure_translations, trait_decls, trait_impls) type gen_ctx = ExtractBase.extraction_ctx type gen_config = { extract_types : bool; extract_decreases_clauses : bool; extract_template_decreases_clauses : bool; extract_fun_decls : bool; extract_trait_decls : bool; extract_trait_impls : bool; extract_transparent : bool; (** If [true], extract the transparent declarations, otherwise ignore. *) extract_opaque : bool; (** If [true], extract the opaque declarations, otherwise ignore. For now, this controls only the opaque *functions*, not the opaque globals or types. TODO: update this. This is not trivial if we want to extract the opaque types in an opaque module, because some non-opaque types may refer to opaque types and vice-versa. *) extract_state_type : bool; (** If [true], generate a definition/declaration for the state type *) extract_globals : bool; (** If [true], generate a definition/declaration for top-level (global) declarations *) interface : bool; (** [true] if we generate an interface file, [false] otherwise. For now, this only impacts whether we use [val] or [assume val] for the opaque definitions. In the future, we might want to extract all the declarations in an interface file, together with an implementation file if needed. *) test_trans_unit_functions : bool; } (** Returns the pair: (has opaque type decls, has opaque fun decls). [filter_assumed]: if [true], do not consider as opaque the external definitions that we will map to definitions from the standard library. *) let crate_has_opaque_non_builtin_decls (ctx : gen_ctx) (filter_assumed : bool) : bool * bool = let types, funs = LlbcAstUtils.crate_get_opaque_non_builtin_decls ctx.crate filter_assumed in log#ldebug (lazy ("Opaque decls:" ^ "\n- types:\n" ^ String.concat ",\n" (List.map show_type_decl types) ^ "\n- functions:\n" ^ String.concat ",\n" (List.map show_fun_decl funs))); (types <> [], funs <> []) (** Export a type declaration. It may happen that we have to extract extra information/instructions. For instance, we might need to define some projector notations. This is why we have the two booleans [extract_decl] and [extract_extra_info]. If [extract_decl] is [true], then we extract the type declaration. If [extract_extra_info] is [true], we extract this extra information (after the declaration, if both booleans are [true]). *) let export_type (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx) (type_decl_group : Pure.TypeDeclId.Set.t) (kind : ExtractBase.decl_kind) (def : Pure.type_decl) (extract_decl : bool) (extract_extra_info : bool) : unit = (* Update the kind, if the type is opaque *) let is_opaque, kind = match def.kind with | Enum _ | Struct _ -> (false, kind) | Opaque -> let kind = if config.interface then ExtractBase.Declared else ExtractBase.Assumed in (true, kind) in (* Extract, if the config instructs to do so (depending on whether the type is opaque or not). Remark: we don't check if the definitions are builtin here but in the function [export_types_group]: the reason is that if one definition in the group is builtin, then we must check that all the definitions are marked builtin *) let extract = (is_opaque && config.extract_opaque) || ((not is_opaque) && config.extract_transparent) in if extract then ( if extract_decl then Extract.extract_type_decl ctx fmt type_decl_group kind def; if extract_extra_info then Extract.extract_type_decl_extra_info ctx fmt kind def) (** Export a group of types. [is_rec]: [true] if the types are recursive. Necessarily [true] if there is > 1 type to extract. *) let export_types_group (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx) (is_rec : bool) (ids : Pure.TypeDeclId.id list) : unit = assert (ids <> []); let export_type = export_type fmt config ctx in let ids_set = Pure.TypeDeclId.Set.of_list ids in let export_type_decl kind id = export_type ids_set kind id true false in let export_type_extra_info kind id = export_type ids_set kind id false true in (* Rem.: we shouldn't have (mutually) recursive opaque types *) let num_decls = List.length ids in let is_mut_rec = num_decls > 1 in let kind_from_index i = if not is_mut_rec then if is_rec then ExtractBase.SingleRec else ExtractBase.SingleNonRec else if i = 0 then ExtractBase.MutRecFirst else if i = num_decls - 1 then ExtractBase.MutRecLast else ExtractBase.MutRecInner in (* Retrieve the declarations *) let defs = List.map (fun id -> Pure.TypeDeclId.Map.find id ctx.trans_types) ids in (* Check if the definition are builtin - if yes they must be ignored. Note that if one definition in the group is builtin, then all the definitions must be builtin *) let builtin = let open ExtractBuiltin in let types_map = builtin_types_map () in List.map (fun (def : Pure.type_decl) -> match_name_find_opt ctx.trans_ctx def.llbc_name types_map <> None) defs in let dont_extract (d : Pure.type_decl) : bool = match d.kind with | Enum _ | Struct _ -> not config.extract_transparent | Opaque -> not config.extract_opaque in if List.exists (fun b -> b) builtin then (* Sanity check *) assert (List.for_all (fun b -> b) builtin) else if List.exists dont_extract defs then (* Check if we have to ignore declarations *) (* Sanity check *) assert (List.for_all dont_extract defs) else ( (* Extract the type declarations. Because some declaration groups are delimited, we wrap the declarations between [{start,end}_type_decl_group]. Ex.: ==== When targeting HOL4, the calls to [{start,end}_type_decl_group] would generate the [Datatype] and [End] delimiters in the snippet of code below: {[ Datatype: tree = TLeaf 'a | TNode node ; node = Node (tree list) End ]} *) Extract.start_type_decl_group ctx fmt is_rec defs; List.iteri (fun i def -> let kind = kind_from_index i in export_type_decl kind def) defs; Extract.end_type_decl_group fmt is_rec defs; (* Export the extra information (ex.: [Arguments] instructions in Coq) *) List.iteri (fun i def -> let kind = kind_from_index i in export_type_extra_info kind def) defs) (** Export a global declaration. TODO: check correct behavior with opaque globals. *) let export_global (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx) (id : GlobalDeclId.id) : unit = let global_decls = ctx.trans_ctx.global_ctx.global_decls in let global = GlobalDeclId.Map.find id global_decls in let trans = FunDeclId.Map.find global.body ctx.trans_funs in assert (trans.fwd.loops = []); assert (trans.backs = []); let body = trans.fwd.f in let is_opaque = Option.is_none body.Pure.body in (* Check if we extract the global *) let extract = config.extract_globals && (((not is_opaque) && config.extract_transparent) || (is_opaque && config.extract_opaque)) in (* Check if it is a builtin global - if yes, we ignore it because we map the definition to one in the standard library *) let open ExtractBuiltin in let extract = extract && match_name_find_opt ctx.trans_ctx global.name builtin_globals_map = None in if extract then (* We don't wrap global declaration groups between calls to functions [{start, end}_global_decl_group] (which don't exist): global declaration groups are always singletons, so the [extract_global_decl] function takes care of generating the delimiters. *) Extract.extract_global_decl ctx fmt global body config.interface (** Utility. Export a group of functions, used by {!export_functions_group}. We need this because for every function in Rust we may generate several functions in the translation (a forward function, several backward functions, loop functions, etc.). Those functions might call each other in different ways. In particular, they may be mutually recursive, in which case we might be able to group them into several groups of mutually recursive definitions, etc. For this reason, {!export_functions_group} computes the dependency graph of the functions as well as their strongly connected components, and gives each SCC at a time to {!export_functions_group_scc}. Rem.: this function only extracts the function *declarations*. It doesn't extract the decrease clauses, nor does it extract the unit tests. Rem.: this function doesn't check [config.extract_fun_decls]: it should have been checked by the caller. *) let export_functions_group_scc (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx) (is_rec : bool) (decls : Pure.fun_decl list) : unit = (* Utility to check a function has a decrease clause *) let has_decreases_clause (def : Pure.fun_decl) : bool = PureUtils.FunLoopIdSet.mem (def.def_id, def.loop_id) ctx.functions_with_decreases_clause in (* Extract the function declarations *) (* Check if the functions are mutually recursive *) let is_mut_rec = List.length decls > 1 in assert ((not is_mut_rec) || is_rec); let decls_length = List.length decls in (* We open and close the declaration group with [{start, end}_fun_decl_group]. Some backends require the groups to be delimited. For instance, if we target HOL4, the calls to [{start, end}_fun_decl_group] would generate the [val ... = Define `] and [`] delimiters in the snippet of code below: {[ val ... = Define ` (even (i : num) : bool result = if i = 0 then Return T else odd (i - 1)) /\ (odd (i : num) : bool result = if i = 0 then Return F else even (i - 1)) ` ]} TODO: in practice splitting the code this way doesn't work so well: merge the start/end decl group functions with the extract_fun_decl function? *) (* Filter the definitions - we generate a list of continuations *) let extract_defs = List.mapi (fun i def -> let is_opaque = Option.is_none def.Pure.body in let kind = if is_opaque then if config.interface then ExtractBase.Declared else ExtractBase.Assumed else if not is_rec then ExtractBase.SingleNonRec else if is_mut_rec then (* If the functions are mutually recursive, we need to distinguish: * - the first of the group * - the last of the group * - the inner functions *) if i = 0 then ExtractBase.MutRecFirst else if i = decls_length - 1 then ExtractBase.MutRecLast else ExtractBase.MutRecInner else ExtractBase.SingleRec in let has_decr_clause = has_decreases_clause def && config.extract_decreases_clauses in (* Check if the definition needs to be filtered or not *) if ((not is_opaque) && config.extract_transparent) || (is_opaque && config.extract_opaque) then Some (fun () -> Extract.extract_fun_decl ctx fmt kind has_decr_clause def) else None) decls in let extract_defs = List.filter_map (fun x -> x) extract_defs in if extract_defs <> [] then ( Extract.start_fun_decl_group ctx fmt is_rec decls; List.iter (fun f -> f ()) extract_defs; Extract.end_fun_decl_group fmt is_rec decls) (** Export a group of function declarations. In case of (non-mutually) recursive functions, we use a simple procedure to check if the forward and backward functions are mutually recursive. *) let export_functions_group (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx) (pure_ls : pure_fun_translation list) : unit = (* Check if the definition are builtin - if yes they must be ignored. Note that if one definition in the group is builtin, then all the definitions must be builtin *) let builtin = let open ExtractBuiltin in let funs_map = builtin_funs_map () in List.map (fun (trans : pure_fun_translation) -> match_name_find_opt ctx.trans_ctx trans.fwd.f.llbc_name funs_map <> None) pure_ls in if List.exists (fun b -> b) builtin then (* Sanity check *) assert (List.for_all (fun b -> b) builtin) else (* Utility to check a function has a decrease clause *) let has_decreases_clause (def : Pure.fun_decl) : bool = PureUtils.FunLoopIdSet.mem (def.def_id, def.loop_id) ctx.functions_with_decreases_clause in (* Extract the decrease clauses template bodies *) if config.extract_template_decreases_clauses then List.iter (fun { fwd; _ } -> (* We only generate decreases clauses for the forward functions, because the termination argument should only depend on the forward inputs. The backward functions thus use the same decreases clauses as the forward function. Rem.: we might filter backward functions in {!PureMicroPasses}, but we don't remove forward functions. Instead, we remember if we should filter those functions at extraction time with a boolean (see the type of the [pure_ls] input parameter). *) let extract_decrease decl = let has_decr_clause = has_decreases_clause decl in if has_decr_clause then match !Config.backend with | Lean -> Extract.extract_template_lean_termination_and_decreasing ctx fmt decl | FStar -> Extract.extract_template_fstar_decreases_clause ctx fmt decl | Coq -> raise (Failure "Coq doesn't have decreases/termination clauses") | HOL4 -> raise (Failure "HOL4 doesn't have decreases/termination clauses") in extract_decrease fwd.f; List.iter extract_decrease fwd.loops) pure_ls; (* Concatenate the function definitions, filtering the useless forward * functions. *) let decls = List.concat (List.map (fun { keep_fwd; fwd; backs } -> let fwd = if keep_fwd then List.append fwd.loops [ fwd.f ] else [] in let backs : Pure.fun_decl list = List.concat (List.map (fun back -> List.append back.loops [ back.f ]) backs) in List.append fwd backs) pure_ls) in (* Extract the function definitions *) (if config.extract_fun_decls then (* Group the mutually recursive definitions *) let subgroups = ReorderDecls.group_reorder_fun_decls decls in (* Extract the subgroups *) let export_subgroup (is_rec : bool) (decls : Pure.fun_decl list) : unit = export_functions_group_scc fmt config ctx is_rec decls in List.iter (fun (is_rec, decls) -> export_subgroup is_rec decls) subgroups); (* Insert unit tests if necessary *) if config.test_trans_unit_functions then List.iter (fun trans -> if trans.keep_fwd then Extract.extract_unit_test_if_unit_fun ctx fmt trans.fwd.f) pure_ls (** Export a trait declaration. *) let export_trait_decl (fmt : Format.formatter) (_config : gen_config) (ctx : gen_ctx) (trait_decl_id : Pure.trait_decl_id) (extract_decl : bool) (extract_extra_info : bool) : unit = let trait_decl = TraitDeclId.Map.find trait_decl_id ctx.trans_trait_decls in (* Check if the trait declaration is builtin, in which case we ignore it *) let open ExtractBuiltin in if match_name_find_opt ctx.trans_ctx trait_decl.llbc_name (builtin_trait_decls_map ()) = None then ( let ctx = { ctx with trait_decl_id = Some trait_decl.def_id } in if extract_decl then Extract.extract_trait_decl ctx fmt trait_decl; if extract_extra_info then Extract.extract_trait_decl_extra_info ctx fmt trait_decl) else () (** Export a trait implementation. *) let export_trait_impl (fmt : Format.formatter) (_config : gen_config) (ctx : gen_ctx) (trait_impl_id : Pure.trait_impl_id) : unit = (* Lookup the definition *) let trait_impl = TraitImplId.Map.find trait_impl_id ctx.trans_trait_impls in let trait_decl = Pure.TraitDeclId.Map.find trait_impl.impl_trait.trait_decl_id ctx.trans_trait_decls in (* Check if the trait implementation is builtin *) let builtin_info = let open ExtractBuiltin in let trait_impl = TraitImplId.Map.find trait_impl.def_id ctx.crate.trait_impls in match_name_with_generics_find_opt ctx.trans_ctx trait_decl.llbc_name trait_impl.impl_trait.decl_generics (builtin_trait_impls_map ()) in match builtin_info with | None -> Extract.extract_trait_impl ctx fmt trait_impl | Some _ -> () (** A generic utility to generate the extracted definitions: as we may want to split the definitions between different files (or not), we can control what is precisely extracted. *) let extract_definitions (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx) : unit = (* Export the definition groups to the file, in the proper order. - [extract_decl]: extract the type declaration (if not filtered) - [extract_extra_info]: extra the extra type information (e.g., the [Arguments] information in Coq). *) let export_functions_group = export_functions_group fmt config ctx in let export_global = export_global fmt config ctx in let export_types_group = export_types_group fmt config ctx in let export_trait_decl_group id = export_trait_decl fmt config ctx id true false in let export_trait_decl_group_extra_info id = export_trait_decl fmt config ctx id false true in let export_trait_impl = export_trait_impl fmt config ctx in let export_state_type () : unit = let kind = if config.interface then ExtractBase.Declared else ExtractBase.Assumed in Extract.extract_state_type fmt ctx kind in let export_decl_group (dg : declaration_group) : unit = match dg with | TypeGroup (NonRecGroup id) -> if config.extract_types then export_types_group false [ id ] | TypeGroup (RecGroup ids) -> if config.extract_types then export_types_group true ids | FunGroup (NonRecGroup id) -> ( (* Lookup *) let pure_fun = FunDeclId.Map.find id ctx.trans_funs in (* Special case: we skip trait method *declarations* (we will extract their type directly in the records we generate for the trait declarations themselves, there is no point in having separate type definitions) *) match pure_fun.fwd.f.Pure.kind with | TraitMethodDecl _ -> () | _ -> (* Translate *) export_functions_group [ pure_fun ]) | FunGroup (RecGroup ids) -> (* General case of mutually recursive functions *) (* Lookup *) let pure_funs = List.map (fun id -> FunDeclId.Map.find id ctx.trans_funs) ids in (* Translate *) export_functions_group pure_funs | GlobalGroup id -> export_global id | TraitDeclGroup id -> (* TODO: update to extract groups *) if config.extract_trait_decls && config.extract_transparent then ( export_trait_decl_group id; export_trait_decl_group_extra_info id) | TraitImplGroup id -> if config.extract_trait_impls && config.extract_transparent then export_trait_impl id in (* If we need to export the state type: we try to export it after we defined * the type definitions, because if the user wants to define a model for the * type, they might want to reuse those in the state type. * More specifically: if we extract functions in the same file as the type, * we have no choice but to define the state type before the functions, * because they may reuse this state type: in this case, we define/declare * it at the very beginning. Otherwise, we define/declare it at the very end. *) if config.extract_state_type && config.extract_fun_decls then export_state_type (); List.iter export_decl_group ctx.crate.declarations; if config.extract_state_type && not config.extract_fun_decls then export_state_type () type extract_file_info = { filename : string; namespace : string; in_namespace : bool; open_namespace : bool; crate_name : string; rust_module_name : string; module_name : string; custom_msg : string; custom_imports : string list; custom_includes : string list; } let extract_file (config : gen_config) (ctx : gen_ctx) (fi : extract_file_info) : unit = (* Open the file and create the formatter *) let out = open_out fi.filename in let fmt = Format.formatter_of_out_channel out in (* Print the headers. * Note that we don't use the OCaml formatter for purpose: we want to control * line insertion (we have to make sure that some instructions like [open MODULE] * are printed on one line!). * This is ok as long as we end up with a line break, so that the formatter's * internal count is consistent with the state of the file. *) (* Create the header *) (match !Config.backend with | Lean -> Printf.fprintf out "-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS\n"; Printf.fprintf out "-- [%s]%s\n" fi.rust_module_name fi.custom_msg | Coq | FStar | HOL4 -> Printf.fprintf out "(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)\n"; Printf.fprintf out "(** [%s]%s *)\n" fi.rust_module_name fi.custom_msg); (* Generate the imports *) (match !Config.backend with | FStar -> Printf.fprintf out "module %s\n" fi.module_name; Printf.fprintf out "open Primitives\n"; (* Add the custom imports *) List.iter (fun m -> Printf.fprintf out "open %s\n" m) fi.custom_imports; (* Add the custom includes *) List.iter (fun m -> Printf.fprintf out "include %s\n" m) fi.custom_includes; (* Z3 options - note that we use fuel 1 because it its useful for the decrease clauses *) Printf.fprintf out "\n#set-options \"--z3rlimit 50 --fuel 1 --ifuel 1\"\n" | Coq -> Printf.fprintf out "Require Import Primitives.\n"; Printf.fprintf out "Import Primitives.\n"; Printf.fprintf out "Require Import Coq.ZArith.ZArith.\n"; Printf.fprintf out "Require Import List.\n"; Printf.fprintf out "Import ListNotations.\n"; Printf.fprintf out "Local Open Scope Primitives_scope.\n"; (* Add the custom imports *) List.iter (fun m -> Printf.fprintf out "Require Import %s.\n" m) fi.custom_imports; (* Add the custom includes *) List.iter (fun m -> (* TODO: I don't really understand how the "Require Export", "Require Import", "Include" work. I used to have: {[ Require Export %s. Import %s. ]} I now have: {[ Require Import %s. Include %s. ]} *) Printf.fprintf out "Require Import %s.\n" m; Printf.fprintf out "Include %s.\n" m) fi.custom_includes; Printf.fprintf out "Module %s.\n" fi.module_name | Lean -> Printf.fprintf out "import Base\n"; (* Add the custom imports *) List.iter (fun m -> Printf.fprintf out "import %s\n" m) fi.custom_imports; (* Add the custom includes *) List.iter (fun m -> Printf.fprintf out "import %s\n" m) fi.custom_includes; (* Always open the Primitives namespace *) Printf.fprintf out "open Primitives\n"; (* If we are inside the namespace: declare it *) if fi.in_namespace then Printf.fprintf out "\nnamespace %s\n" fi.namespace; (* We might need to open the namespace *) if fi.open_namespace then Printf.fprintf out "open %s\n" fi.namespace | HOL4 -> Printf.fprintf out "open primitivesLib divDefLib\n"; (* Add the custom imports and includes *) let imports = fi.custom_imports @ fi.custom_includes in (* The imports are a list of module names: we need to add a "Theory" suffix *) let imports = List.map (fun s -> s ^ "Theory") imports in if imports <> [] then let imports = String.concat " " imports in Printf.fprintf out "open %s\n\n" imports else Printf.fprintf out "\n"; (* Initialize the theory *) Printf.fprintf out "val _ = new_theory \"%s\"\n\n" fi.module_name); (* From now onwards, we use the formatter *) (* Set the margin *) Format.pp_set_margin fmt 80; (* Create a vertical box *) Format.pp_open_vbox fmt 0; (* Extract the definitions *) extract_definitions fmt config ctx; (* Close the box and end the formatting *) Format.pp_close_box fmt (); Format.pp_print_newline fmt (); (* Close the module *) (match !Config.backend with | FStar -> () | Lean -> if fi.in_namespace then Printf.fprintf out "end %s\n" fi.namespace | HOL4 -> Printf.fprintf out "val _ = export_theory ()\n" | Coq -> Printf.fprintf out "End %s.\n" fi.module_name); (* Some logging *) log#linfo (lazy ("Generated: " ^ fi.filename)); (* Flush and close the file *) close_out out (** Translate a crate and write the synthesized code to an output file. *) let translate_crate (filename : string) (dest_dir : string) (crate : crate) : unit = (* Translate the module to the pure AST *) let trans_ctx, trans_types, trans_funs, trans_trait_decls, trans_trait_impls = translate_crate_to_pure crate in (* Initialize the names map by registering the keywords used in the language, as well as some primitive names ("u32", etc.). We insert the names of the local declarations later. *) let names_maps = Extract.initialize_names_maps () in (* We need to compute which functions are recursive, in order to know * whether we should generate a decrease clause or not. *) let rec_functions = List.map (fun { fwd; _ } -> let fwd_f = if fwd.f.Pure.signature.fwd_info.effect_info.is_rec then [ (fwd.f.def_id, None) ] else [] in let loop_fwds = List.map (fun (def : Pure.fun_decl) -> [ (def.def_id, def.loop_id) ]) fwd.loops in fwd_f :: loop_fwds) trans_funs in let rec_functions : PureUtils.fun_loop_id list = List.concat (List.concat rec_functions) in let rec_functions = PureUtils.FunLoopIdSet.of_list rec_functions in (* Put the translated definitions in maps *) let trans_types = Pure.TypeDeclId.Map.of_list (List.map (fun (d : Pure.type_decl) -> (d.def_id, d)) trans_types) in let trans_funs : pure_fun_translation FunDeclId.Map.t = FunDeclId.Map.of_list (List.map (fun (trans : pure_fun_translation) -> (trans.fwd.f.def_id, trans)) trans_funs) in (* Put everything in the context *) let ctx = let trans_trait_decls = TraitDeclId.Map.of_list (List.map (fun (d : Pure.trait_decl) -> (d.def_id, d)) trans_trait_decls) in let trans_trait_impls = TraitImplId.Map.of_list (List.map (fun (d : Pure.trait_impl) -> (d.def_id, d)) trans_trait_impls) in { ExtractBase.crate; trans_ctx; names_maps; indent_incr = 2; use_dep_ite = !Config.backend = Lean && !Config.extract_decreases_clauses; fun_name_info = PureUtils.RegularFunIdMap.empty; trait_decl_id = None (* None by default *); is_provided_method = false (* false by default *); trans_trait_decls; trans_trait_impls; trans_types; trans_funs; functions_with_decreases_clause = rec_functions; types_filter_type_args_map = Pure.TypeDeclId.Map.empty; funs_filter_type_args_map = Pure.FunDeclId.Map.empty; trait_impls_filter_type_args_map = Pure.TraitImplId.Map.empty; } in (* Register unique names for all the top-level types, globals, functions... * Note that the order in which we generate the names doesn't matter: * we just need to generate a mapping from identifier to name, and make * sure there are no name clashes. *) let ctx = List.fold_left (fun ctx def -> Extract.extract_type_decl_register_names ctx def) ctx (Pure.TypeDeclId.Map.values trans_types) in let ctx = List.fold_left (fun ctx (trans : pure_fun_translation) -> (* If requested by the user, register termination measures and decreases proofs for all the recursive functions *) let fwd_def = trans.fwd.f in let gen_decr_clause (def : Pure.fun_decl) = !Config.extract_decreases_clauses && PureUtils.FunLoopIdSet.mem (def.Pure.def_id, def.Pure.loop_id) rec_functions in (* Register the names, only if the function is not a global body - * those are handled later *) let is_global = fwd_def.Pure.is_global_decl_body in if is_global then ctx else Extract.extract_fun_decl_register_names ctx gen_decr_clause trans) ctx (FunDeclId.Map.values trans_funs) in let ctx = List.fold_left Extract.extract_global_decl_register_names ctx (GlobalDeclId.Map.values crate.global_decls) in let ctx = List.fold_left Extract.extract_trait_decl_register_names ctx trans_trait_decls in let ctx = List.fold_left Extract.extract_trait_impl_register_names ctx trans_trait_impls in (* Open the output file *) (* First compute the filename by replacing the extension and converting the * case (rust module names are snake case) *) let namespace, crate_name, extract_filebasename = match Filename.chop_suffix_opt ~suffix:".llbc" filename with | None -> (* Note that we already checked the suffix upon opening the file *) raise (Failure "Unreachable") | Some filename -> (* Retrieve the file basename *) let basename = Filename.basename filename in (* Convert the case *) let crate_name = StringUtils.to_camel_case basename in let crate_name = if !Config.backend = HOL4 then StringUtils.lowercase_first_letter crate_name else crate_name in (* We use the raw crate name for the namespaces *) let namespace = match !Config.backend with | FStar | Coq | HOL4 -> crate.name | Lean -> crate.name in (* Concatenate *) (namespace, crate_name, Filename.concat dest_dir crate_name) in let mkdir_if dest_dir = if not (Sys.file_exists dest_dir) then ( log#linfo (lazy ("Creating missing directory: " ^ dest_dir)); (* Create a directory with *default* permissions *) Core_unix.mkdir_p dest_dir) in (* Create the directory, if necessary *) mkdir_if dest_dir; let needs_clauses_module = !Config.extract_decreases_clauses && not (PureUtils.FunLoopIdSet.is_empty rec_functions) in (* Lean reflects the module hierarchy within the filesystem, so we need to create more directories *) if !Config.backend = Lean then ( let ( ^^ ) = Filename.concat in if !Config.split_files then mkdir_if (dest_dir ^^ crate_name); if needs_clauses_module then ( assert !Config.split_files; mkdir_if (dest_dir ^^ crate_name ^^ "Clauses"))); (* Copy the "Primitives" file, if necessary *) let _ = (* Retrieve the executable's directory *) let exe_dir = Filename.dirname Sys.argv.(0) in let primitives_src_dest = match !Config.backend with | FStar -> let src = if !Config.return_back_funs then "/backends/fstar/merge/Primitives.fst" else "/backends/fstar/split/Primitives.fst" in Some (src, "Primitives.fst") | Coq -> Some ("/backends/coq/Primitives.v", "Primitives.v") | Lean -> None | HOL4 -> None in match primitives_src_dest with | None -> () | Some (primitives_src, primitives_destname) -> ( try (* TODO: stop copying the primitives file *) let src = open_in (exe_dir ^ primitives_src) in let tgt_filename = Filename.concat dest_dir primitives_destname in let tgt = open_out tgt_filename in (* Very annoying: I couldn't find a "cp" function in the OCaml libraries... *) try while true do (* We copy line by line *) let line = input_line src in Printf.fprintf tgt "%s\n" line done with End_of_file -> close_in src; close_out tgt; log#linfo (lazy ("Copied: " ^ tgt_filename)) with Sys_error _ -> log#error "Could not copy the primitives file: %s.\n\ You will have to copy it/set up the project by hand." primitives_src) in (* Extract the file(s) *) let module_delimiter = match !Config.backend with | FStar -> "." | Coq -> "_" | Lean -> "." | HOL4 -> "_" in let file_delimiter = if !Config.backend = Lean then "/" else module_delimiter in (* File extension for the "regular" modules *) let ext = match !Config.backend with | FStar -> ".fst" | Coq -> ".v" | Lean -> ".lean" | HOL4 -> "Script.sml" in (* File extension for the opaque module *) let opaque_ext = match !Config.backend with | FStar -> ".fsti" | Coq -> ".v" | Lean -> ".lean" | HOL4 -> "Script.sml" in (* Extract one or several files, depending on the configuration *) (if !Config.split_files then ( let base_gen_config = { extract_types = false; extract_decreases_clauses = !Config.extract_decreases_clauses; extract_template_decreases_clauses = false; extract_fun_decls = false; extract_trait_decls = false; extract_trait_impls = false; extract_transparent = true; extract_opaque = false; extract_state_type = false; extract_globals = false; interface = false; test_trans_unit_functions = false; } in (* Check if there are opaque types and functions - in which case we need * to split *) let has_opaque_types, has_opaque_funs = crate_has_opaque_non_builtin_decls ctx true in let has_opaque_types = has_opaque_types || !Config.use_state in (* * Extract the types *) (* If there are opaque types, we extract in an interface *) (* Extract the opaque type declarations, if needed *) let opaque_types_module = if has_opaque_types then ( (* For F*, we generate an .fsti, and let the user write the .fst. For the other backends, we generate a template file as a model for the file the user has to provide. *) let module_suffix, opaque_imported_suffix, custom_msg = match !Config.backend with | FStar -> ("TypesExternal", "TypesExternal", ": external type declarations") | HOL4 | Coq | Lean -> ( (* The name of the file we generate *) "TypesExternal_Template", (* The name of the file that will be imported by the Types module, and that the user has to provide. *) "TypesExternal", ": external types.\n\ -- This is a template file: rename it to \ \"TypesExternal.lean\" and fill the holes." ) in let opaque_filename = extract_filebasename ^ file_delimiter ^ module_suffix ^ opaque_ext in let opaque_module = crate_name ^ module_delimiter ^ module_suffix in let opaque_imported_module = crate_name ^ module_delimiter ^ opaque_imported_suffix in let opaque_config = { base_gen_config with extract_opaque = true; extract_transparent = false; extract_types = true; extract_trait_decls = true; extract_state_type = !Config.use_state; interface = true; } in let file_info = { filename = opaque_filename; namespace; in_namespace = false; open_namespace = false; crate_name; rust_module_name = crate.name; module_name = opaque_module; custom_msg; custom_imports = []; custom_includes = []; } in extract_file opaque_config ctx file_info; (* Return the additional dependencies *) [ opaque_imported_module ]) else [] in (* Extract the non opaque types *) let types_filename_ext = match !Config.backend with | FStar -> ".fst" | Coq -> ".v" | Lean -> ".lean" | HOL4 -> "Script.sml" in let types_filename = extract_filebasename ^ file_delimiter ^ "Types" ^ types_filename_ext in let types_module = crate_name ^ module_delimiter ^ "Types" in let types_config = { base_gen_config with extract_types = true; extract_trait_decls = true; extract_opaque = false; interface = has_opaque_types; } in let file_info = { filename = types_filename; namespace; in_namespace = true; open_namespace = false; crate_name; rust_module_name = crate.name; module_name = types_module; custom_msg = ": type definitions"; custom_imports = []; custom_includes = opaque_types_module; } in extract_file types_config ctx file_info; (* Extract the template clauses *) (if needs_clauses_module && !Config.extract_template_decreases_clauses then let template_clauses_filename = extract_filebasename ^ file_delimiter ^ "Clauses" ^ file_delimiter ^ "Template" ^ ext in let template_clauses_module = crate_name ^ module_delimiter ^ "Clauses" ^ module_delimiter ^ "Template" in let template_clauses_config = { base_gen_config with extract_template_decreases_clauses = true } in let file_info = { filename = template_clauses_filename; namespace; in_namespace = true; open_namespace = false; crate_name; rust_module_name = crate.name; module_name = template_clauses_module; custom_msg = ": templates for the decreases clauses"; custom_imports = [ types_module ]; custom_includes = []; } in extract_file template_clauses_config ctx file_info); (* Extract the opaque fun declarations, if needed *) let opaque_funs_module = if has_opaque_funs then ( (* For F*, we generate an .fsti, and let the user write the .fst. For the other backends, we generate a template file as a model for the file the user has to provide. *) let module_suffix, opaque_imported_suffix, custom_msg = match !Config.backend with | FStar -> ( "FunsExternal", "FunsExternal", ": external function declarations" ) | HOL4 | Coq | Lean -> ( (* The name of the file we generate *) "FunsExternal_Template", (* The name of the file that will be imported by the Funs module, and that the user has to provide. *) "FunsExternal", ": external functions.\n\ -- This is a template file: rename it to \ \"FunsExternal.lean\" and fill the holes." ) in let opaque_filename = extract_filebasename ^ file_delimiter ^ module_suffix ^ opaque_ext in let opaque_module = crate_name ^ module_delimiter ^ module_suffix in let opaque_imported_module = crate_name ^ module_delimiter ^ opaque_imported_suffix in let opaque_config = { base_gen_config with extract_fun_decls = true; extract_trait_impls = true; extract_globals = true; extract_transparent = false; extract_opaque = true; interface = true; } in let file_info = { filename = opaque_filename; namespace; in_namespace = false; open_namespace = true; crate_name; rust_module_name = crate.name; module_name = opaque_module; custom_msg; custom_imports = []; custom_includes = [ types_module ]; } in extract_file opaque_config ctx file_info; (* Return the additional dependencies *) [ opaque_imported_module ]) else [] in (* Extract the functions *) let fun_filename = extract_filebasename ^ file_delimiter ^ "Funs" ^ ext in let fun_module = crate_name ^ module_delimiter ^ "Funs" in let fun_config = { base_gen_config with extract_fun_decls = true; extract_trait_impls = true; extract_globals = true; test_trans_unit_functions = !Config.test_trans_unit_functions; } in let clauses_module = if needs_clauses_module then let clauses_submodule = if !Config.backend = Lean then module_delimiter ^ "Clauses" else "" in [ crate_name ^ clauses_submodule ^ module_delimiter ^ "Clauses" ] else [] in let file_info = { filename = fun_filename; namespace; in_namespace = true; open_namespace = false; crate_name; rust_module_name = crate.name; module_name = fun_module; custom_msg = ": function definitions"; custom_imports = []; custom_includes = [ types_module ] @ opaque_funs_module @ clauses_module; } in extract_file fun_config ctx file_info) else let gen_config = { extract_types = true; extract_decreases_clauses = !Config.extract_decreases_clauses; extract_template_decreases_clauses = !Config.extract_template_decreases_clauses; extract_fun_decls = true; extract_trait_decls = true; extract_trait_impls = true; extract_transparent = true; extract_opaque = true; extract_state_type = !Config.use_state; extract_globals = true; interface = false; test_trans_unit_functions = !Config.test_trans_unit_functions; } in let file_info = { filename = extract_filebasename ^ ext; namespace; in_namespace = true; open_namespace = false; crate_name; rust_module_name = crate.name; module_name = crate_name; custom_msg = ""; custom_imports = []; custom_includes = []; } in extract_file gen_config ctx file_info); (* Generate the build file *) match !Config.backend with | Coq | FStar | HOL4 -> () (* Nothing to do - TODO: we might want to generate the _CoqProject file for Coq. But then we can't modify it if we want to add more files for the proofs for instance. But we might want to put the proofs elsewhere anyway. Remark: there is the same problem for Lean actually. Maybe generate it if the user asks for it? *) | Lean -> (* * Generate the library entry point, if the crate is split between * different files. *) if !Config.split_files && !Config.generate_lib_entry_point then ( let filename = Filename.concat dest_dir (crate_name ^ ".lean") in let out = open_out filename in (* Write *) Printf.fprintf out "import %s.Funs\n" crate_name; (* Flush and close the file, log *) close_out out; log#linfo (lazy ("Generated: " ^ filename))); (* * Generate the lakefile.lean file, if the user asks for it *) if !Config.lean_gen_lakefile then ( (* Open the file *) let filename = Filename.concat dest_dir "lakefile.lean" in let out = open_out filename in (* Generate the content *) Printf.fprintf out "import Lake\nopen Lake DSL\n\n"; Printf.fprintf out "require mathlib from git\n"; Printf.fprintf out " \"https://github.com/leanprover-community/mathlib4.git\"\n\n"; let package_name = StringUtils.to_snake_case crate_name in Printf.fprintf out "package «%s» {}\n\n" package_name; Printf.fprintf out "@[default_target]\nlean_lib «%s» {}\n" crate_name; (* No default target for now. Format would be: {[ @[default_target] lean_exe «package_name» { root := `Main } ]} *) (* Flush and close the file *) close_out out; (* Logging *) log#linfo (lazy ("Generated: " ^ filename)))