open Pure (** Default logger *) let log = Logging.pure_utils_log (** We use this type as a key for lookups *) type regular_fun_id = A.fun_id * T.RegionGroupId.id option [@@deriving show, ord] module RegularFunIdOrderedType = struct type t = regular_fun_id let compare = compare_regular_fun_id let to_string = show_regular_fun_id let pp_t = pp_regular_fun_id let show_t = show_regular_fun_id end module RegularFunIdMap = Collections.MakeMap (RegularFunIdOrderedType) module FunOrOpIdOrderedType = struct type t = fun_or_op_id let compare = compare_fun_or_op_id let to_string = show_fun_or_op_id let pp_t = pp_fun_or_op_id let show_t = show_fun_or_op_id end module FunOrOpIdMap = Collections.MakeMap (FunOrOpIdOrderedType) module FunOrOpIdSet = Collections.MakeSet (FunOrOpIdOrderedType) let dest_arrow_ty (ty : ty) : ty * ty = match ty with | Arrow (arg_ty, ret_ty) -> (arg_ty, ret_ty) | _ -> raise (Failure "Unreachable") let compute_primitive_value_ty (cv : primitive_value) : ty = match cv with | PV.Scalar sv -> Integer sv.PV.int_ty | Bool _ -> Bool | Char _ -> Char | String _ -> Str let mk_typed_pattern_from_primitive_value (cv : primitive_value) : typed_pattern = let ty = compute_primitive_value_ty cv in { value = PatConstant cv; ty } let mk_let (monadic : bool) (lv : typed_pattern) (re : texpression) (next_e : texpression) : texpression = let e = Let (monadic, lv, re, next_e) in let ty = next_e.ty in { e; ty } (** Type substitution *) let ty_substitute (tsubst : TypeVarId.id -> ty) (ty : ty) : ty = let obj = object inherit [_] map_ty method! visit_TypeVar _ var_id = tsubst var_id end in obj#visit_ty () ty let make_type_subst (vars : type_var list) (tys : ty list) : TypeVarId.id -> ty = let ls = List.combine vars tys in let mp = List.fold_left (fun mp (k, v) -> TypeVarId.Map.add (k : type_var).index v mp) TypeVarId.Map.empty ls in fun id -> TypeVarId.Map.find id mp (** Retrieve the list of fields for the given variant of a {!type:Aeneas.Pure.type_decl}. Raises [Invalid_argument] if the arguments are incorrect. *) let type_decl_get_fields (def : type_decl) (opt_variant_id : VariantId.id option) : field list = match (def.kind, opt_variant_id) with | Enum variants, Some variant_id -> (VariantId.nth variants variant_id).fields | Struct fields, None -> fields | _ -> let opt_variant_id = match opt_variant_id with None -> "None" | Some _ -> "Some" in raise (Invalid_argument ("The variant id should be [Some] if and only if the definition is \ an enumeration:\n\ - def: " ^ show_type_decl def ^ "\n- opt_variant_id: " ^ opt_variant_id)) (** Instantiate the type variables for the chosen variant in an ADT definition, and return the list of the types of its fields *) let type_decl_get_instantiated_fields_types (def : type_decl) (opt_variant_id : VariantId.id option) (types : ty list) : ty list = let ty_subst = make_type_subst def.type_params types in let fields = type_decl_get_fields def opt_variant_id in List.map (fun f -> ty_substitute ty_subst f.field_ty) fields let fun_sig_substitute (tsubst : TypeVarId.id -> ty) (sg : fun_sig) : inst_fun_sig = let subst = ty_substitute tsubst in let inputs = List.map subst sg.inputs in let output = subst sg.output in let doutputs = List.map subst sg.doutputs in let info = sg.info in { inputs; output; doutputs; info } (** Return true if a list of functions are *not* mutually recursive, false otherwise. This function is meant to be applied on a set of (forward, backwards) functions generated for one recursive function. The way we do the test is very simple: - we explore the functions one by one, in the order in which they are provided - if all functions only call functions we already explored, they are not mutually recursive *) let functions_not_mutually_recursive (funs : fun_decl list) : bool = (* Compute the set of function identifiers in the group *) let ids = FunOrOpIdSet.of_list (List.map (fun (f : fun_decl) -> Fun (FromLlbc (A.Regular f.def_id, f.back_id))) funs) in let ids = ref ids in (* Explore every body *) let body_only_calls_itself (fdef : fun_decl) : bool = (* Remove the current id from the id set *) ids := FunOrOpIdSet.remove (Fun (FromLlbc (A.Regular fdef.def_id, fdef.back_id))) !ids; (* Check if we call functions from the updated id set *) let obj = object inherit [_] iter_expression as super method! visit_qualif env qualif = match qualif.id with | FunOrOp fun_id -> if FunOrOpIdSet.mem fun_id !ids then raise Utils.Found else super#visit_qualif env qualif | _ -> super#visit_qualif env qualif end in try match fdef.body with | None -> true | Some body -> obj#visit_texpression () body.body; true with Utils.Found -> false in List.for_all body_only_calls_itself funs (** We use this to check whether we need to add parentheses around expressions. We only look for outer monadic let-bindings. This is used when printing the branches of [if ... then ... else ...]. *) let rec let_group_requires_parentheses (e : texpression) : bool = match e.e with | Var _ | Const _ | App _ | Abs _ | Qualif _ -> false | Let (monadic, _, _, next_e) -> if monadic then true else let_group_requires_parentheses next_e | Switch (_, _) -> false | Meta (_, next_e) -> let_group_requires_parentheses next_e let is_var (e : texpression) : bool = match e.e with Var _ -> true | _ -> false let as_var (e : texpression) : VarId.id = match e.e with Var v -> v | _ -> raise (Failure "Unreachable") let is_global (e : texpression) : bool = match e.e with Qualif { id = Global _; _ } -> true | _ -> false let is_const (e : texpression) : bool = match e.e with Const _ -> true | _ -> false (** Remove the external occurrences of {!Meta} *) let rec unmeta (e : texpression) : texpression = match e.e with Meta (_, e) -> unmeta e | _ -> e (** Remove *all* the meta information *) let remove_meta (e : texpression) : texpression = let obj = object inherit [_] map_expression as super method! visit_Meta env _ e = super#visit_expression env e.e end in obj#visit_texpression () e let mk_arrow (ty0 : ty) (ty1 : ty) : ty = Arrow (ty0, ty1) (** Construct a type as a list of arrows: ty1 -> ... tyn *) let mk_arrows (inputs : ty list) (output : ty) = let rec aux (tys : ty list) : ty = match tys with [] -> output | ty :: tys' -> Arrow (ty, aux tys') in aux inputs (** Destruct an expression into a list of nested lets *) let rec destruct_lets (e : texpression) : (bool * typed_pattern * texpression) list * texpression = match e.e with | Let (monadic, lv, re, next_e) -> let lets, last_e = destruct_lets next_e in ((monadic, lv, re) :: lets, last_e) | _ -> ([], e) (** Destruct an [App] expression into an expression and a list of arguments. We simply destruct the expression as long as it is of the form [App (f, x)]. *) let destruct_apps (e : texpression) : texpression * texpression list = let rec aux (args : texpression list) (e : texpression) : texpression * texpression list = match e.e with App (f, x) -> aux (x :: args) f | _ -> (e, args) in aux [] e (** Make an [App (app, arg)] expression *) let mk_app (app : texpression) (arg : texpression) : texpression = match app.ty with | Arrow (ty0, ty1) -> (* Sanity check *) assert (ty0 = arg.ty); let e = App (app, arg) in let ty = ty1 in { e; ty } | _ -> raise (Failure "Expected an arrow type") (** The reverse of {!destruct_apps} *) let mk_apps (app : texpression) (args : texpression list) : texpression = List.fold_left (fun app arg -> mk_app app arg) app args (** Destruct an expression into a qualif identifier and a list of arguments, * if possible *) let opt_destruct_qualif_app (e : texpression) : (qualif * texpression list) option = let app, args = destruct_apps e in match app.e with Qualif qualif -> Some (qualif, args) | _ -> None (** Destruct an expression into a qualif identifier and a list of arguments *) let destruct_qualif_app (e : texpression) : qualif * texpression list = Option.get (opt_destruct_qualif_app e) (** Destruct an expression into a function call, if possible *) let opt_destruct_function_call (e : texpression) : (fun_or_op_id * ty list * texpression list) option = match opt_destruct_qualif_app e with | None -> None | Some (qualif, args) -> ( match qualif.id with | FunOrOp fun_id -> Some (fun_id, qualif.type_args, args) | _ -> None) let opt_destruct_result (ty : ty) : ty option = match ty with | Adt (Assumed Result, tys) -> Some (Collections.List.to_cons_nil tys) | _ -> None let destruct_result (ty : ty) : ty = Option.get (opt_destruct_result ty) let opt_destruct_tuple (ty : ty) : ty list option = match ty with Adt (Tuple, tys) -> Some tys | _ -> None let mk_abs (x : typed_pattern) (e : texpression) : texpression = let ty = Arrow (x.ty, e.ty) in let e = Abs (x, e) in { e; ty } let rec destruct_abs_list (e : texpression) : typed_pattern list * texpression = match e.e with | Abs (x, e') -> let xl, e'' = destruct_abs_list e' in (x :: xl, e'') | _ -> ([], e) let destruct_arrow (ty : ty) : ty * ty = match ty with | Arrow (ty0, ty1) -> (ty0, ty1) | _ -> raise (Failure "Not an arrow type") let rec destruct_arrows (ty : ty) : ty list * ty = match ty with | Arrow (ty0, ty1) -> let tys, out_ty = destruct_arrows ty1 in (ty0 :: tys, out_ty) | _ -> ([], ty) let get_switch_body_ty (sb : switch_body) : ty = match sb with | If (e_then, _) -> e_then.ty | Match branches -> (* There should be at least one branch *) (List.hd branches).branch.ty let map_switch_body_branches (f : texpression -> texpression) (sb : switch_body) : switch_body = match sb with | If (e_then, e_else) -> If (f e_then, f e_else) | Match branches -> Match (List.map (fun (b : match_branch) -> { b with branch = f b.branch }) branches) let iter_switch_body_branches (f : texpression -> unit) (sb : switch_body) : unit = match sb with | If (e_then, e_else) -> f e_then; f e_else | Match branches -> List.iter (fun (b : match_branch) -> f b.branch) branches let mk_switch (scrut : texpression) (sb : switch_body) : texpression = (* Sanity check: the scrutinee has the proper type *) (match sb with | If (_, _) -> assert (scrut.ty = Bool) | Match branches -> List.iter (fun (b : match_branch) -> assert (b.pat.ty = scrut.ty)) branches); (* Sanity check: all the branches have the same type *) let ty = get_switch_body_ty sb in iter_switch_body_branches (fun e -> assert (e.ty = ty)) sb; (* Put together *) let e = Switch (scrut, sb) in { e; ty } (** Make a "simplified" tuple type from a list of types: - if there is exactly one type, just return it - if there is > one type: wrap them in a tuple *) let mk_simpl_tuple_ty (tys : ty list) : ty = match tys with [ ty ] -> ty | _ -> Adt (Tuple, tys) let mk_bool_ty : ty = Bool let mk_unit_ty : ty = Adt (Tuple, []) let mk_unit_rvalue : texpression = let id = AdtCons { adt_id = Tuple; variant_id = None } in let qualif = { id; type_args = [] } in let e = Qualif qualif in let ty = mk_unit_ty in { e; ty } let mk_texpression_from_var (v : var) : texpression = let e = Var v.id in let ty = v.ty in { e; ty } let mk_typed_pattern_from_var (v : var) (mp : mplace option) : typed_pattern = let value = PatVar (v, mp) in let ty = v.ty in { value; ty } let mk_dummy_pattern (ty : ty) : typed_pattern = let value = PatDummy in { value; ty } let mk_meta (m : meta) (e : texpression) : texpression = let ty = e.ty in let e = Meta (m, e) in { e; ty } let mk_mplace_texpression (mp : mplace) (e : texpression) : texpression = mk_meta (MPlace mp) e let mk_opt_mplace_texpression (mp : mplace option) (e : texpression) : texpression = match mp with None -> e | Some mp -> mk_mplace_texpression mp e (** Make a "simplified" tuple value from a list of values: - if there is exactly one value, just return it - if there is > one value: wrap them in a tuple *) let mk_simpl_tuple_pattern (vl : typed_pattern list) : typed_pattern = match vl with | [ v ] -> v | _ -> let tys = List.map (fun (v : typed_pattern) -> v.ty) vl in let ty = Adt (Tuple, tys) in let value = PatAdt { variant_id = None; field_values = vl } in { value; ty } (** Similar to {!mk_simpl_tuple_pattern} *) let mk_simpl_tuple_texpression (vl : texpression list) : texpression = match vl with | [ v ] -> v | _ -> (* Compute the types of the fields, and the type of the tuple constructor *) let tys = List.map (fun (v : texpression) -> v.ty) vl in let ty = Adt (Tuple, tys) in let ty = mk_arrows tys ty in (* Construct the tuple constructor qualifier *) let id = AdtCons { adt_id = Tuple; variant_id = None } in let qualif = { id; type_args = tys } in (* Put everything together *) let cons = { e = Qualif qualif; ty } in mk_apps cons vl let mk_adt_pattern (adt_ty : ty) (variant_id : VariantId.id option) (vl : typed_pattern list) : typed_pattern = let value = PatAdt { variant_id; field_values = vl } in { value; ty = adt_ty } let ty_as_integer (t : ty) : T.integer_type = match t with Integer int_ty -> int_ty | _ -> raise (Failure "Unreachable") (* TODO: move *) let type_decl_is_enum (def : T.type_decl) : bool = match def.kind with T.Struct _ -> false | Enum _ -> true | Opaque -> false let mk_state_ty : ty = Adt (Assumed State, []) let mk_result_ty (ty : ty) : ty = Adt (Assumed Result, [ ty ]) let mk_error_ty : ty = Adt (Assumed Error, []) let mk_fuel_ty : ty = Adt (Assumed Fuel, []) let mk_error (error : VariantId.id) : texpression = let ty = mk_error_ty in let id = AdtCons { adt_id = Assumed Error; variant_id = Some error } in let qualif = { id; type_args = [] } in let e = Qualif qualif in { e; ty } let unwrap_result_ty (ty : ty) : ty = match ty with | Adt (Assumed Result, [ ty ]) -> ty | _ -> raise (Failure "not a result type") let mk_result_fail_texpression (error : texpression) (ty : ty) : texpression = let type_args = [ ty ] in let ty = Adt (Assumed Result, type_args) in let id = AdtCons { adt_id = Assumed Result; variant_id = Some result_fail_id } in let qualif = { id; type_args } in let cons_e = Qualif qualif in let cons_ty = mk_arrow error.ty ty in let cons = { e = cons_e; ty = cons_ty } in mk_app cons error let mk_result_fail_texpression_with_error_id (error : VariantId.id) (ty : ty) : texpression = let error = mk_error error in mk_result_fail_texpression error ty let mk_result_return_texpression (v : texpression) : texpression = let type_args = [ v.ty ] in let ty = Adt (Assumed Result, type_args) in let id = AdtCons { adt_id = Assumed Result; variant_id = Some result_return_id } in let qualif = { id; type_args } in let cons_e = Qualif qualif in let cons_ty = mk_arrow v.ty ty in let cons = { e = cons_e; ty = cons_ty } in mk_app cons v (** Create a [Fail err] pattern which captures the error *) let mk_result_fail_pattern (error_pat : pattern) (ty : ty) : typed_pattern = let error_pat : typed_pattern = { value = error_pat; ty = mk_error_ty } in let ty = Adt (Assumed Result, [ ty ]) in let value = PatAdt { variant_id = Some result_fail_id; field_values = [ error_pat ] } in { value; ty } (** Create a [Fail _] pattern (we ignore the error) *) let mk_result_fail_pattern_ignore_error (ty : ty) : typed_pattern = let error_pat : pattern = PatDummy in mk_result_fail_pattern error_pat ty let mk_result_return_pattern (v : typed_pattern) : typed_pattern = let ty = Adt (Assumed Result, [ v.ty ]) in let value = PatAdt { variant_id = Some result_return_id; field_values = [ v ] } in { value; ty } let opt_unmeta_mplace (e : texpression) : mplace option * texpression = match e.e with Meta (MPlace mp, e) -> (Some mp, e) | _ -> (None, e) let mk_state_var (id : VarId.id) : var = { id; basename = Some ConstStrings.state_basename; ty = mk_state_ty } let mk_state_texpression (id : VarId.id) : texpression = { e = Var id; ty = mk_state_ty } let mk_fuel_var (id : VarId.id) : var = { id; basename = Some ConstStrings.fuel_basename; ty = mk_fuel_ty } let mk_fuel_texpression (id : VarId.id) : texpression = { e = Var id; ty = mk_fuel_ty }