(* The following module defines functions to check that some invariants * are always maintained by evaluation contexts *) module T = Types module PV = PrimitiveValues module V = Values module E = Expressions module C = Contexts module Subst = Substitute module A = LlbcAst module L = Logging open Cps open TypesUtils open InterpreterUtils open InterpreterBorrowsCore (** The local logger *) let log = L.invariants_log type borrow_info = { loan_kind : T.ref_kind; loan_in_abs : bool; (* true if the loan was found in an abstraction *) loan_ids : V.BorrowId.Set.t; borrow_ids : V.BorrowId.Set.t; } [@@deriving show] type outer_borrow_info = { outer_borrow : bool; (* true if the value is borrowed *) outer_shared : bool; (* true if the value is borrowed as shared *) } let set_outer_mut (info : outer_borrow_info) : outer_borrow_info = { info with outer_borrow = true } let set_outer_shared (_info : outer_borrow_info) : outer_borrow_info = { outer_borrow = true; outer_shared = true } let ids_reprs_to_string (indent : string) (reprs : V.BorrowId.id V.BorrowId.Map.t) : string = V.BorrowId.Map.to_string (Some indent) V.BorrowId.to_string reprs let borrows_infos_to_string (indent : string) (infos : borrow_info V.BorrowId.Map.t) : string = V.BorrowId.Map.to_string (Some indent) show_borrow_info infos type borrow_kind = Mut | Shared | Reserved (** Check that: - loans and borrows are correctly related - a two-phase borrow can't point to a value inside an abstraction *) let check_loans_borrows_relation_invariant (ctx : C.eval_ctx) : unit = (* Link all the borrow ids to a representant - necessary because of shared * borrows/loans *) let ids_reprs : V.BorrowId.id V.BorrowId.Map.t ref = ref V.BorrowId.Map.empty in (* Link all the id representants to a borrow information *) let borrows_infos : borrow_info V.BorrowId.Map.t ref = ref V.BorrowId.Map.empty in let context_to_string () : string = eval_ctx_to_string ctx ^ "- representants:\n" ^ ids_reprs_to_string " " !ids_reprs ^ "\n- info:\n" ^ borrows_infos_to_string " " !borrows_infos in (* Ignored loans - when we find an ignored loan while building the borrows_infos * map, we register it in this list; once the borrows_infos map is completely * built, we check that all the borrow ids of the ignored loans are in this * map *) let ignored_loans : (T.ref_kind * V.BorrowId.id) list ref = ref [] in (* first, register all the loans *) (* Some utilities to register the loans *) let register_ignored_loan (rkind : T.ref_kind) (bid : V.BorrowId.id) : unit = ignored_loans := (rkind, bid) :: !ignored_loans in let register_shared_loan (loan_in_abs : bool) (bids : V.BorrowId.Set.t) : unit = let reprs = !ids_reprs in let infos = !borrows_infos in (* Use the first borrow id as representant *) let repr_bid = V.BorrowId.Set.min_elt bids in assert (not (V.BorrowId.Map.mem repr_bid infos)); (* Insert the mappings to the representant *) let reprs = V.BorrowId.Set.fold (fun bid reprs -> assert (not (V.BorrowId.Map.mem bid reprs)); V.BorrowId.Map.add bid repr_bid reprs) bids reprs in (* Insert the loan info *) let info = { loan_kind = T.Shared; loan_in_abs; loan_ids = bids; borrow_ids = V.BorrowId.Set.empty; } in let infos = V.BorrowId.Map.add repr_bid info infos in (* Update *) ids_reprs := reprs; borrows_infos := infos in let register_mut_loan (loan_in_abs : bool) (bid : V.BorrowId.id) : unit = let reprs = !ids_reprs in let infos = !borrows_infos in (* Sanity checks *) assert (not (V.BorrowId.Map.mem bid reprs)); assert (not (V.BorrowId.Map.mem bid infos)); (* Add the mapping for the representant *) let reprs = V.BorrowId.Map.add bid bid reprs in (* Add the mapping for the loan info *) let info = { loan_kind = T.Mut; loan_in_abs; loan_ids = V.BorrowId.Set.singleton bid; borrow_ids = V.BorrowId.Set.empty; } in let infos = V.BorrowId.Map.add bid info infos in (* Update *) ids_reprs := reprs; borrows_infos := infos in let loans_visitor = object inherit [_] C.iter_eval_ctx as super method! visit_Var _ binder v = let inside_abs = false in super#visit_Var inside_abs binder v method! visit_Abs _ abs = let inside_abs = true in super#visit_Abs inside_abs abs method! visit_loan_content inside_abs lc = (* Register the loan *) let _ = match lc with | V.SharedLoan (bids, _) -> register_shared_loan inside_abs bids | V.MutLoan bid -> register_mut_loan inside_abs bid in (* Continue exploring *) super#visit_loan_content inside_abs lc method! visit_aloan_content inside_abs lc = let _ = match lc with | V.AMutLoan (bid, _) -> register_mut_loan inside_abs bid | V.ASharedLoan (bids, _, _) -> register_shared_loan inside_abs bids | V.AIgnoredMutLoan (bid, _) -> register_ignored_loan T.Mut bid | V.AIgnoredSharedLoan _ | V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ } | V.AEndedSharedLoan (_, _) | V.AEndedIgnoredMutLoan { given_back = _; child = _; given_back_meta = _ } -> (* Do nothing *) () in (* Continue exploring *) super#visit_aloan_content inside_abs lc end in (* Visit *) let inside_abs = false in loans_visitor#visit_eval_ctx inside_abs ctx; (* Then, register all the borrows *) (* Some utilities to register the borrows *) let find_info (bid : V.BorrowId.id) : borrow_info = (* Find the representant *) match V.BorrowId.Map.find_opt bid !ids_reprs with | Some repr_bid -> (* Lookup the info *) V.BorrowId.Map.find repr_bid !borrows_infos | None -> let err = "find_info: could not find the representant of borrow " ^ V.BorrowId.to_string bid ^ ":\nContext:\n" ^ context_to_string () in log#serror err; raise (Failure err) in let update_info (bid : V.BorrowId.id) (info : borrow_info) : unit = (* Find the representant *) let repr_bid = V.BorrowId.Map.find bid !ids_reprs in (* Update the info *) let infos = V.BorrowId.Map.update repr_bid (fun x -> match x with | Some _ -> Some info | None -> raise (Failure "Unreachable")) !borrows_infos in borrows_infos := infos in let register_ignored_borrow = register_ignored_loan in let register_borrow (kind : borrow_kind) (bid : V.BorrowId.id) : unit = (* Lookup the info *) let info = find_info bid in (* Check that the borrow kind is consistent *) (match (info.loan_kind, kind) with | T.Shared, (Shared | Reserved) | T.Mut, Mut -> () | _ -> raise (Failure "Invariant not satisfied")); (* A reserved borrow can't point to a value inside an abstraction *) assert (kind <> Reserved || not info.loan_in_abs); (* Insert the borrow id *) let borrow_ids = info.borrow_ids in assert (not (V.BorrowId.Set.mem bid borrow_ids)); let info = { info with borrow_ids = V.BorrowId.Set.add bid borrow_ids } in (* Update the info in the map *) update_info bid info in let borrows_visitor = object inherit [_] C.iter_eval_ctx as super method! visit_abstract_shared_borrows _ asb = let visit asb = match asb with | V.AsbBorrow bid -> register_borrow Shared bid | V.AsbProjReborrows _ -> () in List.iter visit asb method! visit_borrow_content env bc = (* Register the loan *) let _ = match bc with | V.SharedBorrow (_, bid) -> register_borrow Shared bid | V.MutBorrow (bid, _) -> register_borrow Mut bid | V.ReservedMutBorrow (_, bid) -> register_borrow Reserved bid in (* Continue exploring *) super#visit_borrow_content env bc method! visit_aborrow_content env bc = let _ = match bc with | V.AMutBorrow (_, bid, _) -> register_borrow Mut bid | V.ASharedBorrow bid -> register_borrow Shared bid | V.AIgnoredMutBorrow (Some bid, _) -> register_ignored_borrow Mut bid | V.AIgnoredMutBorrow (None, _) | V.AEndedMutBorrow _ | V.AEndedIgnoredMutBorrow _ | V.AEndedSharedBorrow | V.AProjSharedBorrow _ -> (* Do nothing *) () in (* Continue exploring *) super#visit_aborrow_content env bc end in (* Visit *) borrows_visitor#visit_eval_ctx () ctx; (* Debugging *) log#ldebug (lazy ("\nAbout to check context invariant:\n" ^ context_to_string ())); (* Finally, check that everything is consistant *) (* First, check all the ignored loans are present at the proper place *) List.iter (fun (rkind, bid) -> let info = find_info bid in assert (info.loan_kind = rkind)) !ignored_loans; (* Then, check the borrow infos *) V.BorrowId.Map.iter (fun _ info -> (* Note that we can't directly compare the sets - I guess they are * different depending on the order in which we add the elements... *) assert ( V.BorrowId.Set.elements info.loan_ids = V.BorrowId.Set.elements info.borrow_ids); match info.loan_kind with | T.Mut -> assert (V.BorrowId.Set.cardinal info.loan_ids = 1) | T.Shared -> ()) !borrows_infos (** Check that: - borrows/loans can't contain ⊥ or reserved mut borrows - shared loans can't contain mutable loans *) let check_borrowed_values_invariant (ctx : C.eval_ctx) : unit = let visitor = object inherit [_] C.iter_eval_ctx as super method! visit_Bottom info = (* No ⊥ inside borrowed values *) assert (Config.allow_bottom_below_borrow || not info.outer_borrow) method! visit_ABottom _info = (* ⊥ inside an abstraction is not the same as in a regular value *) () method! visit_loan_content info lc = (* Update the info *) let info = match lc with | V.SharedLoan (_, _) -> set_outer_shared info | V.MutLoan _ -> (* No mutable loan inside a shared loan *) assert (not info.outer_shared); set_outer_mut info in (* Continue exploring *) super#visit_loan_content info lc method! visit_borrow_content info bc = (* Update the info *) let info = match bc with | V.SharedBorrow _ -> set_outer_shared info | V.ReservedMutBorrow _ -> assert (not info.outer_borrow); set_outer_shared info | V.MutBorrow (_, _) -> set_outer_mut info in (* Continue exploring *) super#visit_borrow_content info bc method! visit_aloan_content info lc = (* Update the info *) let info = match lc with | V.AMutLoan (_, _) -> set_outer_mut info | V.ASharedLoan (_, _, _) -> set_outer_shared info | V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ } -> set_outer_mut info | V.AEndedSharedLoan (_, _) -> set_outer_shared info | V.AIgnoredMutLoan (_, _) -> set_outer_mut info | V.AEndedIgnoredMutLoan { given_back = _; child = _; given_back_meta = _ } -> set_outer_mut info | V.AIgnoredSharedLoan _ -> set_outer_shared info in (* Continue exploring *) super#visit_aloan_content info lc method! visit_aborrow_content info bc = (* Update the info *) let info = match bc with | V.AMutBorrow (_, _, _) -> set_outer_mut info | V.ASharedBorrow _ | V.AEndedSharedBorrow -> set_outer_shared info | V.AIgnoredMutBorrow _ | V.AEndedMutBorrow _ | V.AEndedIgnoredMutBorrow _ -> set_outer_mut info | V.AProjSharedBorrow _ -> set_outer_shared info in (* Continue exploring *) super#visit_aborrow_content info bc end in (* Explore *) let info = { outer_borrow = false; outer_shared = false } in visitor#visit_eval_ctx info ctx let check_primitive_value_type (cv : V.primitive_value) (ty : T.ety) : unit = match (cv, ty) with | PV.Scalar sv, T.Integer int_ty -> assert (sv.int_ty = int_ty) | PV.Bool _, T.Bool | PV.Char _, T.Char | PV.String _, T.Str -> () | _ -> raise (Failure "Erroneous typing") let check_typing_invariant (ctx : C.eval_ctx) : unit = (* TODO: the type of aloans doens't make sense: they have a type * of the shape [& (mut) T] where they should have type [T]... * This messes a bit the type invariant checks when checking the * children. In order to isolate the problem (for future modifications) * we introduce function, so that we can easily spot all the involved * places. * *) let aloan_get_expected_child_type (ty : 'r T.ty) : 'r T.ty = let _, ty, _ = ty_get_ref ty in ty in let visitor = object inherit [_] C.iter_eval_ctx as super method! visit_abs _ abs = super#visit_abs (Some abs) abs method! visit_typed_value info tv = (* Check the current pair (value, type) *) (match (tv.V.value, tv.V.ty) with | V.Primitive cv, ty -> check_primitive_value_type cv ty (* ADT case *) | V.Adt av, T.Adt (T.AdtId def_id, regions, tys) -> (* Retrieve the definition to check the variant id, the number of * parameters, etc. *) let def = C.ctx_lookup_type_decl ctx def_id in (* Check the number of parameters *) assert (List.length regions = List.length def.region_params); assert (List.length tys = List.length def.type_params); (* Check that the variant id is consistent *) (match (av.V.variant_id, def.T.kind) with | Some variant_id, T.Enum variants -> assert (T.VariantId.to_int variant_id < List.length variants) | None, T.Struct _ -> () | _ -> raise (Failure "Erroneous typing")); (* Check that the field types are correct *) let field_types = Subst.type_decl_get_instantiated_field_etypes def av.V.variant_id tys in let fields_with_types = List.combine av.V.field_values field_types in List.iter (fun ((v, ty) : V.typed_value * T.ety) -> assert (v.V.ty = ty)) fields_with_types (* Tuple case *) | V.Adt av, T.Adt (T.Tuple, regions, tys) -> assert (regions = []); assert (av.V.variant_id = None); (* Check that the fields have the proper values - and check that there * are as many fields as field types at the same time *) let fields_with_types = List.combine av.V.field_values tys in List.iter (fun ((v, ty) : V.typed_value * T.ety) -> assert (v.V.ty = ty)) fields_with_types (* Assumed type case *) | V.Adt av, T.Adt (T.Assumed aty_id, regions, tys) -> ( assert (av.V.variant_id = None || aty_id = T.Option); match (aty_id, av.V.field_values, regions, tys) with (* Box *) | T.Box, [ inner_value ], [], [ inner_ty ] | T.Option, [ inner_value ], [], [ inner_ty ] -> assert (inner_value.V.ty = inner_ty) | T.Option, _, [], [ _ ] -> (* Option::None: nothing to check *) () | T.Vec, fvs, [], [ vec_ty ] -> List.iter (fun (v : V.typed_value) -> assert (v.ty = vec_ty)) fvs | _ -> raise (Failure "Erroneous type")) | V.Bottom, _ -> (* Nothing to check *) () | V.Borrow bc, T.Ref (_, ref_ty, rkind) -> ( match (bc, rkind) with | V.SharedBorrow (_, bid), T.Shared | V.ReservedMutBorrow (_, bid), T.Mut -> ( (* Lookup the borrowed value to check it has the proper type *) let _, glc = lookup_loan ek_all bid ctx in match glc with | Concrete (V.SharedLoan (_, sv)) | Abstract (V.ASharedLoan (_, sv, _)) -> assert (sv.V.ty = ref_ty) | _ -> raise (Failure "Inconsistent context")) | V.MutBorrow (_, bv), T.Mut -> assert ( (* Check that the borrowed value has the proper type *) bv.V.ty = ref_ty) | _ -> raise (Failure "Erroneous typing")) | V.Loan lc, ty -> ( match lc with | V.SharedLoan (_, sv) -> assert (sv.V.ty = ty) | V.MutLoan bid -> ( (* Lookup the borrowed value to check it has the proper type *) let glc = lookup_borrow ek_all bid ctx in match glc with | Concrete (V.MutBorrow (_, bv)) -> assert (bv.V.ty = ty) | Abstract (V.AMutBorrow (_, _, sv)) -> assert (Subst.erase_regions sv.V.ty = ty) | _ -> raise (Failure "Inconsistent context"))) | V.Symbolic sv, ty -> let ty' = Subst.erase_regions sv.V.sv_ty in assert (ty' = ty) | _ -> raise (Failure "Erroneous typing")); (* Continue exploring to inspect the subterms *) super#visit_typed_value info tv (* TODO: there is a lot of duplication with {!visit_typed_value} * which is quite annoying. There might be a way of factorizing * that by factorizing the definitions of value and avalue, but * the generation of visitors then doesn't work properly (TODO: * report that). Still, it is actually not that problematic * because this code shouldn't change a lot in the future, * so the cost of maintenance should be pretty low. * *) method! visit_typed_avalue info atv = (* Check the current pair (value, type) *) (match (atv.V.value, atv.V.ty) with | V.APrimitive cv, ty -> check_primitive_value_type cv (Subst.erase_regions ty) (* ADT case *) | V.AAdt av, T.Adt (T.AdtId def_id, regions, tys) -> (* Retrieve the definition to check the variant id, the number of * parameters, etc. *) let def = C.ctx_lookup_type_decl ctx def_id in (* Check the number of parameters *) assert (List.length regions = List.length def.region_params); assert (List.length tys = List.length def.type_params); (* Check that the variant id is consistent *) (match (av.V.variant_id, def.T.kind) with | Some variant_id, T.Enum variants -> assert (T.VariantId.to_int variant_id < List.length variants) | None, T.Struct _ -> () | _ -> raise (Failure "Erroneous typing")); (* Check that the field types are correct *) let field_types = Subst.type_decl_get_instantiated_field_rtypes def av.V.variant_id regions tys in let fields_with_types = List.combine av.V.field_values field_types in List.iter (fun ((v, ty) : V.typed_avalue * T.rty) -> assert (v.V.ty = ty)) fields_with_types (* Tuple case *) | V.AAdt av, T.Adt (T.Tuple, regions, tys) -> assert (regions = []); assert (av.V.variant_id = None); (* Check that the fields have the proper values - and check that there * are as many fields as field types at the same time *) let fields_with_types = List.combine av.V.field_values tys in List.iter (fun ((v, ty) : V.typed_avalue * T.rty) -> assert (v.V.ty = ty)) fields_with_types (* Assumed type case *) | V.AAdt av, T.Adt (T.Assumed aty_id, regions, tys) -> ( assert (av.V.variant_id = None); match (aty_id, av.V.field_values, regions, tys) with (* Box *) | T.Box, [ boxed_value ], [], [ boxed_ty ] -> assert (boxed_value.V.ty = boxed_ty) | _ -> raise (Failure "Erroneous type")) | V.ABottom, _ -> (* Nothing to check *) () | V.ABorrow bc, T.Ref (_, ref_ty, rkind) -> ( match (bc, rkind) with | V.AMutBorrow (_, _, av), T.Mut -> (* Check that the child value has the proper type *) assert (av.V.ty = ref_ty) | V.ASharedBorrow bid, T.Shared -> ( (* Lookup the borrowed value to check it has the proper type *) let _, glc = lookup_loan ek_all bid ctx in match glc with | Concrete (V.SharedLoan (_, sv)) | Abstract (V.ASharedLoan (_, sv, _)) -> assert (sv.V.ty = Subst.erase_regions ref_ty) | _ -> raise (Failure "Inconsistent context")) | V.AIgnoredMutBorrow (_opt_bid, av), T.Mut -> assert (av.V.ty = ref_ty) | ( V.AEndedIgnoredMutBorrow { given_back_loans_proj; child; given_back_meta = _ }, T.Mut ) -> assert (given_back_loans_proj.V.ty = ref_ty); assert (child.V.ty = ref_ty) | V.AProjSharedBorrow _, T.Shared -> () | _ -> raise (Failure "Inconsistent context")) | V.ALoan lc, aty -> ( match lc with | V.AMutLoan (bid, child_av) | V.AIgnoredMutLoan (bid, child_av) -> ( let borrowed_aty = aloan_get_expected_child_type aty in assert (child_av.V.ty = borrowed_aty); (* Lookup the borrowed value to check it has the proper type *) let glc = lookup_borrow ek_all bid ctx in match glc with | Concrete (V.MutBorrow (_, bv)) -> assert (bv.V.ty = Subst.erase_regions borrowed_aty) | Abstract (V.AMutBorrow (_, _, sv)) -> assert ( Subst.erase_regions sv.V.ty = Subst.erase_regions borrowed_aty) | _ -> raise (Failure "Inconsistent context")) | V.ASharedLoan (_, sv, child_av) | V.AEndedSharedLoan (sv, child_av) -> let borrowed_aty = aloan_get_expected_child_type aty in assert (sv.V.ty = Subst.erase_regions borrowed_aty); (* TODO: the type of aloans doesn't make sense, see above *) assert (child_av.V.ty = borrowed_aty) | V.AEndedMutLoan { given_back; child; given_back_meta = _ } | V.AEndedIgnoredMutLoan { given_back; child; given_back_meta = _ } -> let borrowed_aty = aloan_get_expected_child_type aty in assert (given_back.V.ty = borrowed_aty); assert (child.V.ty = borrowed_aty) | V.AIgnoredSharedLoan child_av -> assert (child_av.V.ty = aloan_get_expected_child_type aty)) | V.ASymbolic aproj, ty -> ( let ty1 = Subst.erase_regions ty in match aproj with | V.AProjLoans (sv, _) -> let ty2 = Subst.erase_regions sv.V.sv_ty in assert (ty1 = ty2); (* Also check that the symbolic values contain regions of interest - * otherwise they should have been reduced to [_] *) let abs = Option.get info in assert (ty_has_regions_in_set abs.regions sv.V.sv_ty) | V.AProjBorrows (sv, proj_ty) -> let ty2 = Subst.erase_regions sv.V.sv_ty in assert (ty1 = ty2); (* Also check that the symbolic values contain regions of interest - * otherwise they should have been reduced to [_] *) let abs = Option.get info in assert (ty_has_regions_in_set abs.regions proj_ty) | V.AEndedProjLoans (_msv, given_back_ls) -> List.iter (fun (_, proj) -> match proj with | V.AProjBorrows (_sv, ty') -> assert (ty' = ty) | V.AEndedProjBorrows _ | V.AIgnoredProjBorrows -> () | _ -> raise (Failure "Unexpected")) given_back_ls | V.AEndedProjBorrows _ | V.AIgnoredProjBorrows -> ()) | V.AIgnored, _ -> () | _ -> raise (Failure "Erroneous typing")); (* Continue exploring to inspect the subterms *) super#visit_typed_avalue info atv end in visitor#visit_eval_ctx (None : V.abs option) ctx type proj_borrows_info = { abs_id : V.AbstractionId.id; regions : T.RegionId.Set.t; proj_ty : T.rty; as_shared_value : bool; (** True if the value is below a shared borrow *) } [@@deriving show] type proj_loans_info = { abs_id : V.AbstractionId.id; regions : T.RegionId.Set.t; } [@@deriving show] type sv_info = { ty : T.rty; env_count : int; aproj_borrows : proj_borrows_info list; aproj_loans : proj_loans_info list; } [@@deriving show] (** Check the invariants over the symbolic values. - a symbolic value can't be both in proj_borrows and in the concrete env (this is why we preemptively expand copyable symbolic values) - if a symbolic value contains regions: there is at most one occurrence of this value in the concrete env - if there is an aproj_borrows in the environment, there must also be a corresponding aproj_loans - aproj_loans are mutually disjoint - TODO: aproj_borrows are mutually disjoint - the union of the aproj_loans contains the aproj_borrows applied on the same symbolic values *) let check_symbolic_values (ctx : C.eval_ctx) : unit = (* Small utility *) let module M = V.SymbolicValueId.Map in let infos : sv_info M.t ref = ref M.empty in let lookup_info (sv : V.symbolic_value) : sv_info = match M.find_opt sv.V.sv_id !infos with | Some info -> info | None -> { ty = sv.sv_ty; env_count = 0; aproj_borrows = []; aproj_loans = [] } in let update_info (sv : V.symbolic_value) (info : sv_info) = infos := M.add sv.sv_id info !infos in let add_env_sv (sv : V.symbolic_value) : unit = let info = lookup_info sv in let info = { info with env_count = info.env_count + 1 } in update_info sv info in let add_aproj_borrows (sv : V.symbolic_value) abs_id regions proj_ty as_shared_value : unit = let info = lookup_info sv in let binfo = { abs_id; regions; proj_ty; as_shared_value } in let info = { info with aproj_borrows = binfo :: info.aproj_borrows } in update_info sv info in let add_aproj_loans (sv : V.symbolic_value) abs_id regions : unit = let info = lookup_info sv in let linfo = { abs_id; regions } in let info = { info with aproj_loans = linfo :: info.aproj_loans } in update_info sv info in (* Visitor *) let obj = object inherit [_] C.iter_eval_ctx as super method! visit_abs _ abs = super#visit_abs (Some abs) abs method! visit_Symbolic _ sv = add_env_sv sv method! visit_abstract_shared_borrows abs asb = let abs = Option.get abs in let visit asb = match asb with | V.AsbBorrow _ -> () | AsbProjReborrows (sv, proj_ty) -> add_aproj_borrows sv abs.abs_id abs.regions proj_ty true in List.iter visit asb method! visit_aproj abs aproj = (let abs = Option.get abs in match aproj with | AProjLoans (sv, _) -> add_aproj_loans sv abs.abs_id abs.regions | AProjBorrows (sv, proj_ty) -> add_aproj_borrows sv abs.abs_id abs.regions proj_ty false | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> ()); super#visit_aproj abs aproj end in (* Collect the information *) obj#visit_eval_ctx None ctx; log#ldebug (lazy ("check_symbolic_values: collected information:\n" ^ V.SymbolicValueId.Map.to_string (Some " ") show_sv_info !infos)); (* Check *) let check_info _id info = (* TODO: check that: * - the borrows are mutually disjoint *) (* A symbolic value can't be both in the regular environment and inside * projectors of borrows in abstractions *) assert (info.env_count = 0 || info.aproj_borrows = []); (* A symbolic value containing borrows can't be duplicated (i.e., copied): * it must be expanded first *) if ty_has_borrows ctx.type_context.type_infos info.ty then assert (info.env_count <= 1); (* A duplicated symbolic value is necessarily primitively copyable *) assert (info.env_count <= 1 || ty_is_primitively_copyable info.ty); assert (info.aproj_borrows = [] || info.aproj_loans <> []); (* At the same time: * - check that the loans don't intersect * - compute the set of regions for which we project loans *) (* Check that the loan projectors contain the region projectors *) let loan_regions = List.fold_left (fun regions linfo -> let regions = T.RegionId.Set.fold (fun rid regions -> assert (not (T.RegionId.Set.mem rid regions)); T.RegionId.Set.add rid regions) regions linfo.regions in regions) T.RegionId.Set.empty info.aproj_loans in (* Check that the union of the loan projectors contains the borrow projections. *) List.iter (fun binfo -> assert ( projection_contains info.ty loan_regions binfo.proj_ty binfo.regions)) info.aproj_borrows; () in M.iter check_info !infos let check_invariants (ctx : C.eval_ctx) : unit = if !Config.check_invariants then ( log#ldebug (lazy "Checking invariants"); check_loans_borrows_relation_invariant ctx; check_borrowed_values_invariant ctx; check_typing_invariant ctx; check_symbolic_values ctx) else log#ldebug (lazy "Not checking invariants (check is not activated)") (** Same as {!check_invariants}, but written in CPS *) let cf_check_invariants : cm_fun = fun cf ctx -> check_invariants ctx; cf ctx