open Types open Values open Contexts open ValuesUtils open Meta module S = SynthesizeSymbolic open Cps open InterpreterUtils open InterpreterLoopsCore open InterpreterLoopsMatchCtxs open InterpreterLoopsFixedPoint open Errors (** The local logger *) let log = Logging.loops_log (** Evaluate a loop in concrete mode *) let eval_loop_concrete (span : Meta.span) (eval_loop_body : stl_cm_fun) : stl_cm_fun = fun ctx -> (* We need a loop id for the [LoopReturn]. In practice it won't be used (it is useful only for the symbolic execution *) let loop_id = fresh_loop_id () in (* Function to recursively evaluate the loop We need a specific function because of the {!Continue} case: in case we continue, we might have to reevaluate the current loop body with the new context (and repeat this an indefinite number of times). *) let rec rec_eval_loop_body (ctx : eval_ctx) (res : statement_eval_res) = log#ldebug (lazy "eval_loop_concrete: reeval_loop_body"); match res with | Return -> [ (ctx, LoopReturn loop_id) ] | Panic -> [ (ctx, Panic) ] | Break i -> (* Break out of the loop *) let res = if i = 0 then Unit else Break (i - 1) in [ (ctx, res) ] | Continue 0 -> (* Re-evaluate the loop body *) let ctx_resl, _ = eval_loop_body ctx in let ctx_res_cfl = List.map (fun (ctx, res) -> rec_eval_loop_body ctx res) ctx_resl in List.flatten ctx_res_cfl | Continue i -> (* Continue to an outer loop *) [ (ctx, Continue (i - 1)) ] | Unit -> (* We can't get there. * Note that if we decide not to fail here but rather do * the same thing as for [Continue 0], we could make the * code slightly simpler: calling {!reeval_loop_body} with * {!Unit} would account for the first iteration of the loop. * We prefer to write it this way for consistency and sanity, * though. *) craise __FILE__ __LINE__ span "Unreachable" | LoopReturn _ | EndEnterLoop _ | EndContinue _ -> (* We can't get there: this is only used in symbolic mode *) craise __FILE__ __LINE__ span "Unreachable" in (* Apply - for the first iteration, we use the result `Continue 0` to evaluate the loop body at least once *) let ctx_resl = rec_eval_loop_body ctx (Continue 0) in (* If we evaluate in concrete mode, we shouldn't have to generate any symbolic expression *) let cf el = sanity_check __FILE__ __LINE__ (el = None) span; None in (ctx_resl, cf) (** Auxiliary function for {!eval_loop_symbolic}. Match the context upon entering the loop with the loop fixed-point to compute how to "apply" the fixed-point. Compute the correspondance from the borrow ids in the current context to the loans which appear in the loop context (we need this in order to know how to introduce the region abstractions of the loop). We check the fixed-point at the same time to make sure the loans and borrows inside the region abstractions are properly ordered (this is necessary for the synthesis). Ex.: if in the fixed point we have: {[ abs { MB l0, MB l1, ML l2, ML l3 } ]} we want to make sure that borrow l0 actually corresponds to loan l2, and borrow l1 to loan l3. *) let eval_loop_symbolic_synthesize_fun_end (config : config) (span : span) (loop_id : LoopId.id) (init_ctx : eval_ctx) (fixed_ids : ids_sets) (fp_ctx : eval_ctx) (fp_input_svalues : SymbolicValueId.id list) (rg_to_abs : AbstractionId.id RegionGroupId.Map.t) : ((eval_ctx * statement_eval_res) * (eval_result -> eval_result)) * borrow_loan_corresp = (* First, preemptively end borrows/move values by matching the current context with the target context *) let ctx, cf_prepare = log#ldebug (lazy ("eval_loop_symbolic_synthesize_fun_end: about to reorganize the \ original context to match the fixed-point ctx with it:\n\ - src ctx (fixed-point ctx):\n" ^ eval_ctx_to_string fp_ctx ^ "\n\n-tgt ctx (original context):\n" ^ eval_ctx_to_string init_ctx)); prepare_match_ctx_with_target config span loop_id fixed_ids fp_ctx init_ctx in (* Actually match *) log#ldebug (lazy ("eval_loop_symbolic_synthesize_fun_end: about to compute the id \ correspondance between the fixed-point ctx and the original ctx:\n\ - src ctx (fixed-point ctx)\n" ^ eval_ctx_to_string fp_ctx ^ "\n\n-tgt ctx (original context):\n" ^ eval_ctx_to_string ctx)); (* Compute the id correspondance between the contexts *) let fp_bl_corresp = compute_fixed_point_id_correspondance span fixed_ids ctx fp_ctx in log#ldebug (lazy ("eval_loop_symbolic_synthesize_fun_end: about to match the fixed-point \ context with the original context:\n\ - src ctx (fixed-point ctx)" ^ eval_ctx_to_string ~span:(Some span) fp_ctx ^ "\n\n-tgt ctx (original context):\n" ^ eval_ctx_to_string ~span:(Some span) ctx ^ "\n\n- fp_bl_corresp:\n" ^ show_borrow_loan_corresp fp_bl_corresp ^ "\n")); (* Compute the end expression, that is the expresion corresponding to the end of the function where we call the loop (for now, when calling a loop we never get out) *) let res_fun_end = comp cf_prepare (match_ctx_with_target config span loop_id true fp_bl_corresp fp_input_svalues fixed_ids fp_ctx ctx) in (* Sanity check: the mutable borrows/loans are properly ordered. TODO: it seems that the way the fixed points are computed makes this check always succeed. If it happens to fail we can reorder the borrows/loans inside the region abstractions. *) let check_abs (abs_id : AbstractionId.id) = let abs = ctx_lookup_abs fp_ctx abs_id in let is_borrow (av : typed_avalue) : bool = match av.value with | ABorrow _ -> true | ALoan _ -> false | _ -> craise __FILE__ __LINE__ span "Unreachable" in let borrows, loans = List.partition is_borrow abs.avalues in let mut_borrows = List.filter_map (fun (av : typed_avalue) -> match av.value with | ABorrow (AMutBorrow (pm, bid, child_av)) -> sanity_check __FILE__ __LINE__ (pm = PNone) span; sanity_check __FILE__ __LINE__ (is_aignored child_av.value) span; Some bid | ABorrow (ASharedBorrow (pm, _)) -> sanity_check __FILE__ __LINE__ (pm = PNone) span; None | _ -> craise __FILE__ __LINE__ span "Unreachable") borrows in let mut_loans = List.filter_map (fun (av : typed_avalue) -> match av.value with | ALoan (AMutLoan (pm, bid, child_av)) -> sanity_check __FILE__ __LINE__ (pm = PNone) span; sanity_check __FILE__ __LINE__ (is_aignored child_av.value) span; Some bid | ALoan (ASharedLoan (pm, _, _, _)) -> sanity_check __FILE__ __LINE__ (pm = PNone) span; None | _ -> craise __FILE__ __LINE__ span "Unreachable") loans in sanity_check __FILE__ __LINE__ (List.length mut_borrows = List.length mut_loans) span; let borrows_loans = List.combine mut_borrows mut_loans in List.iter (fun (bid, lid) -> let lid_of_bid = BorrowId.InjSubst.find bid fp_bl_corresp.borrow_to_loan_id_map in sanity_check __FILE__ __LINE__ (lid_of_bid = lid) span) borrows_loans in List.iter check_abs (RegionGroupId.Map.values rg_to_abs); (* Return *) (res_fun_end, fp_bl_corresp) (** Auxiliary function for {!eval_loop_symbolic}. Synthesize the body of the loop. *) let eval_loop_symbolic_synthesize_loop_body (config : config) (span : span) (eval_loop_body : stl_cm_fun) (loop_id : LoopId.id) (fixed_ids : ids_sets) (fp_ctx : eval_ctx) (fp_input_svalues : SymbolicValueId.id list) (fp_bl_corresp : borrow_loan_corresp) : (eval_ctx * statement_eval_res) list * (SymbolicAst.expression list option -> eval_result) = (* First, evaluate the loop body starting from the **fixed-point** context *) let ctx_resl, cf_loop = eval_loop_body fp_ctx in (* Then, do a special treatment of the break and continue cases. For now, we forbid having breaks in loops (and eliminate breaks in the prepasses) *) let eval_after_loop_iter (ctx, res) = log#ldebug (lazy "eval_loop_symbolic: eval_after_loop_iter"); match res with | Return -> (* We replace the [Return] with a [LoopReturn] *) ((ctx, LoopReturn loop_id), fun e -> e) | Panic -> ((ctx, res), fun e -> e) | Break _ -> (* Breaks should have been eliminated in the prepasses *) craise __FILE__ __LINE__ span "Unexpected break" | Continue i -> (* We don't support nested loops for now *) cassert __FILE__ __LINE__ (i = 0) span "Nested loops are not supported yet"; log#ldebug (lazy ("eval_loop_symbolic: about to match the fixed-point context with \ the context at a continue:\n\ - src ctx (fixed-point ctx)" ^ eval_ctx_to_string ~span:(Some span) fp_ctx ^ "\n\n-tgt ctx (ctx at continue):\n" ^ eval_ctx_to_string ~span:(Some span) ctx)); match_ctx_with_target config span loop_id false fp_bl_corresp fp_input_svalues fixed_ids fp_ctx ctx | Unit | LoopReturn _ | EndEnterLoop _ | EndContinue _ -> (* For why we can't get [Unit], see the comments inside {!eval_loop_concrete}. For [EndEnterLoop] and [EndContinue]: we don't support nested loops for now. *) craise __FILE__ __LINE__ span "Unreachable" in (* Apply and compose *) let ctx_resl, cfl = List.split (List.map eval_after_loop_iter ctx_resl) in let cc (el : SymbolicAst.expression list option) : eval_result = match el with | None -> None | Some el -> let el = List.map (fun (cf, e) -> Option.get (cf (Some e))) (List.combine cfl el) in cf_loop (Some el) in (ctx_resl, cc) (** Evaluate a loop in symbolic mode *) let eval_loop_symbolic (config : config) (span : span) (eval_loop_body : stl_cm_fun) : stl_cm_fun = fun ctx -> (* Debug *) log#ldebug (lazy ("eval_loop_symbolic:\nContext:\n" ^ eval_ctx_to_string ~span:(Some span) ctx ^ "\n\n")); (* Generate a fresh loop id *) let loop_id = fresh_loop_id () in (* Compute the fixed point at the loop entrance *) let fp_ctx, fixed_ids, rg_to_abs = compute_loop_entry_fixed_point config span loop_id eval_loop_body ctx in (* Debug *) log#ldebug (lazy ("eval_loop_symbolic:\nInitial context:\n" ^ eval_ctx_to_string ~span:(Some span) ctx ^ "\n\nFixed point:\n" ^ eval_ctx_to_string ~span:(Some span) fp_ctx)); (* Compute the loop input parameters *) let fresh_sids, input_svalues = compute_fp_ctx_symbolic_values span ctx fp_ctx in let fp_input_svalues = List.map (fun sv -> sv.sv_id) input_svalues in (* Synthesize the end of the function - we simply match the context at the loop entry with the fixed point: in the synthesized code, the function will end with a call to the loop translation. We update the loop fixed point at the same time by reordering the borrows/ loans which appear inside it. *) let (res_fun_end, cf_fun_end), fp_bl_corresp = eval_loop_symbolic_synthesize_fun_end config span loop_id ctx fixed_ids fp_ctx fp_input_svalues rg_to_abs in log#ldebug (lazy "eval_loop_symbolic: matched the fixed-point context with the original \ context."); (* Synthesize the loop body *) let resl_loop_body, cf_loop_body = eval_loop_symbolic_synthesize_loop_body config span eval_loop_body loop_id fixed_ids fp_ctx fp_input_svalues fp_bl_corresp in log#ldebug (lazy ("eval_loop_symbolic: result:" ^ "\n- src context:\n" ^ eval_ctx_to_string_no_filter ~span:(Some span) ctx ^ "\n- fixed point:\n" ^ eval_ctx_to_string_no_filter ~span:(Some span) fp_ctx ^ "\n- fixed_sids: " ^ SymbolicValueId.Set.show fixed_ids.sids ^ "\n- fresh_sids: " ^ SymbolicValueId.Set.show fresh_sids ^ "\n- input_svalues: " ^ Print.list_to_string (symbolic_value_to_string ctx) input_svalues ^ "\n\n")); (* For every abstraction introduced by the fixed-point, compute the types of the given back values. We need to explore the abstractions, looking for the mutable borrows. Moreover, we list the borrows in the same order as the loans (this is important in {!SymbolicToPure}, where we expect the given back values to have a specific order. Also, we filter the backward functions which and return nothing. *) let rg_to_given_back = let compute_abs_given_back_tys (abs_id : AbstractionId.id) : rty list = let abs = ctx_lookup_abs fp_ctx abs_id in log#ldebug (lazy ("eval_loop_symbolic: compute_abs_given_back_tys:\n- abs:\n" ^ abs_to_string span ctx abs ^ "\n")); let is_borrow (av : typed_avalue) : bool = match av.value with | ABorrow _ -> true | ALoan _ -> false | _ -> craise __FILE__ __LINE__ span "Unreachable" in let borrows, _ = List.partition is_borrow abs.avalues in List.filter_map (fun (av : typed_avalue) -> match av.value with | ABorrow (AMutBorrow (pm, _, child_av)) -> sanity_check __FILE__ __LINE__ (pm = PNone) span; sanity_check __FILE__ __LINE__ (is_aignored child_av.value) span; Some child_av.ty | ABorrow (ASharedBorrow (pm, _)) -> sanity_check __FILE__ __LINE__ (pm = PNone) span; None | _ -> craise __FILE__ __LINE__ span "Unreachable") borrows in RegionGroupId.Map.map compute_abs_given_back_tys rg_to_abs in (* Put everything together *) let cc (el : SymbolicAst.expression list option) = match el with | None -> None | Some el -> ( match el with | [] -> internal_error __FILE__ __LINE__ span | e :: el -> let fun_end_expr = cf_fun_end (Some e) in let loop_expr = cf_loop_body (Some el) in S.synthesize_loop loop_id input_svalues fresh_sids rg_to_given_back fun_end_expr loop_expr span) in (res_fun_end :: resl_loop_body, cc) let eval_loop (config : config) (span : span) (eval_loop_body : stl_cm_fun) : stl_cm_fun = fun ctx -> match config.mode with | ConcreteMode -> (eval_loop_concrete span eval_loop_body) ctx | SymbolicMode -> (* Simplify the context by ending the unnecessary borrows/loans and getting rid of the useless symbolic values (which are in anonymous variables) *) let ctx, cc = cleanup_fresh_values_and_abs config span empty_ids_set ctx in (* We want to make sure the loop will *not* manipulate shared avalues containing themselves shared loans (i.e., nested shared loans in the abstractions), because it complexifies the matches between values (when joining environments, or checking that two environments are equivalent). We thus call {!prepare_ashared_loans} once *before* diving into the loop, to make sure the shared values are deconstructed. Note that we will call this function again inside {!eval_loop_symbolic}, to introduce fresh, non-fixed abstractions containing the shared values which can be manipulated (and thus borrowed, expanded, etc.) so that the fixed abstractions are never modified. This is important to understand: we call this function once here to introduce *fixed* abstractions, and again later to introduce *non-fixed* abstractions. *) let ctx, cc = comp cc (prepare_ashared_loans span None ctx) in comp cc (eval_loop_symbolic config span eval_loop_body ctx)