(** This file defines the basic blocks to implement the semantics of borrows. Note that those functions are not only used in InterpreterBorrows, but also in Invariants or InterpreterProjectors *) module T = Types module V = Values module C = Contexts module Subst = Substitute module L = Logging open Utils open TypesUtils open InterpreterUtils (** The local logger *) let log = L.borrows_log (** TODO: cleanup this a bit, once we have a better understanding about what we need. TODO: I'm not sure in which file this should be moved... *) type exploration_kind = { enter_shared_loans : bool; enter_mut_borrows : bool; enter_abs : bool; (** Note that if we allow to enter abs, we don't check whether we enter mutable/shared loans or borrows: there are no use cases requiring a finer control. *) } (** This record controls how some generic helper lookup/update functions behave, by restraining the kind of therms they can enter. *) let ek_all : exploration_kind = { enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true } type borrow_ids = Borrows of V.BorrowId.Set.t | Borrow of V.BorrowId.id [@@deriving show] type borrow_ids_or_symbolic_value = | BorrowIds of borrow_ids | SymbolicValue of V.symbolic_value [@@deriving show] exception FoundBorrowIds of borrow_ids type priority_borrows_or_abs = | OuterBorrows of borrow_ids | OuterAbs of V.AbstractionId.id | InnerLoans of borrow_ids [@@deriving show] let update_if_none opt x = match opt with None -> Some x | _ -> opt (** Utility exception *) exception FoundPriority of priority_borrows_or_abs type loan_or_borrow_content = | LoanContent of V.loan_content | BorrowContent of V.borrow_content [@@deriving show] type borrow_or_abs_id = | BorrowId of V.BorrowId.id | AbsId of V.AbstractionId.id type borrow_or_abs_ids = borrow_or_abs_id list let borrow_or_abs_id_to_string (id : borrow_or_abs_id) : string = match id with | AbsId id -> "abs@" ^ V.AbstractionId.to_string id | BorrowId id -> "l@" ^ V.BorrowId.to_string id let borrow_or_abs_ids_chain_to_string (ids : borrow_or_abs_ids) : string = let ids = List.rev ids in let ids = List.map borrow_or_abs_id_to_string ids in String.concat " -> " ids (** Add a borrow or abs id to a chain of ids, while checking that we don't loop *) let add_borrow_or_abs_id_to_chain (msg : string) (id : borrow_or_abs_id) (ids : borrow_or_abs_ids) : borrow_or_abs_ids = if List.mem id ids then raise (Failure (msg ^ "detected a loop in the chain of ids: " ^ borrow_or_abs_ids_chain_to_string (id :: ids))) else id :: ids (** Helper function. This function allows to define in a generic way a comparison of **region types**. See [projections_intersect] for instance. Important: the regions in the types mustn't be erased. [default]: default boolean to return, when comparing types with no regions [combine]: how to combine booleans [compare_regions]: how to compare regions TODO: is there a way of deriving such a comparison? TODO: rename *) let rec compare_rtys (default : bool) (combine : bool -> bool -> bool) (compare_regions : T.region -> T.region -> bool) (ty1 : T.rty) (ty2 : T.rty) : bool = let compare = compare_rtys default combine compare_regions in (* Sanity check - TODO: don't do this at every recursive call *) assert (ty_is_rty ty1 && ty_is_rty ty2); (* Normalize the associated types *) match (ty1, ty2) with | TLiteral lit1, TLiteral lit2 -> assert (lit1 = lit2); default | TAdt (id1, generics1), TAdt (id2, generics2) -> assert (id1 = id2); (* There are no regions in the const generics, so we ignore them, but we still check they are the same, for sanity *) assert (generics1.const_generics = generics2.const_generics); (* We also ignore the trait refs *) (* The check for the ADTs is very crude: we simply compare the arguments * two by two. * * For instance, when checking if some projections intersect, we simply * check if some arguments intersect. As all the type and region * parameters should be used somewhere in the ADT (otherwise rustc * generates an error), it means that it should be equivalent to checking * whether two fields intersect (and anyway comparing the field types is * difficult in case of enumerations...). * If we didn't have the above property enforced by the rust compiler, * this check would still be a reasonable conservative approximation. *) (* Check the region parameters *) let regions = List.combine generics1.regions generics2.regions in let params_b = List.fold_left (fun b (r1, r2) -> combine b (compare_regions r1 r2)) default regions in (* Check the type parameters *) let tys = List.combine generics1.types generics2.types in let tys_b = List.fold_left (fun b (ty1, ty2) -> combine b (compare ty1 ty2)) default tys in (* Combine *) combine params_b tys_b | TRef (r1, ty1, kind1), TRef (r2, ty2, kind2) -> (* Sanity check *) assert (kind1 = kind2); (* Explanation for the case where we check if projections intersect: * the projections intersect if the borrows intersect or their contents * intersect. *) let regions_b = compare_regions r1 r2 in let tys_b = compare ty1 ty2 in combine regions_b tys_b | TVar id1, TVar id2 -> assert (id1 = id2); default | TTraitType _, TTraitType _ -> (* The types should have been normalized. If after normalization we get trait types, we can consider them as variables *) assert (ty1 = ty2); default | _ -> log#lerror (lazy ("compare_rtys: unexpected inputs:" ^ "\n- ty1: " ^ T.show_ty ty1 ^ "\n- ty2: " ^ T.show_ty ty2)); raise (Failure "Unreachable") (** Check if two different projections intersect. This is necessary when giving a symbolic value to an abstraction: we need to check that the regions which are already ended inside the abstraction don't intersect the regions over which we project in the new abstraction. Note that the two abstractions have different views (in terms of regions) of the symbolic value (hence the two region types). *) let projections_intersect (ty1 : T.rty) (rset1 : T.RegionId.Set.t) (ty2 : T.rty) (rset2 : T.RegionId.Set.t) : bool = let default = false in let combine b1 b2 = b1 || b2 in let compare_regions r1 r2 = region_in_set r1 rset1 && region_in_set r2 rset2 in compare_rtys default combine compare_regions ty1 ty2 (** Check if the first projection contains the second projection. We use this function when checking invariants. The regions in the types shouldn't be erased (this function will raise an exception otherwise). *) let projection_contains (ty1 : T.rty) (rset1 : T.RegionId.Set.t) (ty2 : T.rty) (rset2 : T.RegionId.Set.t) : bool = let default = true in let combine b1 b2 = b1 && b2 in let compare_regions r1 r2 = region_in_set r1 rset1 || not (region_in_set r2 rset2) in compare_rtys default combine compare_regions ty1 ty2 (** Lookup a loan content. The loan is referred to by a borrow id. Rem.: if the {!InterpreterUtils.g_loan_content} is {!constructor:Aeneas.InterpreterUtils.concrete_or_abs.Concrete}, the {!InterpreterUtils.abs_or_var_id} is not necessarily {!constructor:Aeneas.InterpreterUtils.abs_or_var_id.VarId} or {!constructor:Aeneas.InterpreterUtils.abs_or_var_id.DummyVarId}: there can be concrete loans in abstractions (in the shared values). *) let lookup_loan_opt (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) : (abs_or_var_id * g_loan_content) option = (* We store here whether we are inside an abstraction or a value - note that we * could also track that with the environment, it would probably be more idiomatic * and cleaner *) let abs_or_var : abs_or_var_id option ref = ref None in let obj = object inherit [_] C.iter_eval_ctx as super method! visit_borrow_content env bc = match bc with | V.VSharedBorrow bid -> (* Nothing specific to do *) super#visit_VSharedBorrow env bid | V.VReservedMutBorrow bid -> (* Nothing specific to do *) super#visit_VReservedMutBorrow env bid | V.VMutBorrow (bid, mv) -> (* Control the dive *) if ek.enter_mut_borrows then super#visit_VMutBorrow env bid mv else () (** We reimplement {!visit_Loan} (rather than the more precise functions {!visit_SharedLoan}, etc.) on purpose: as we have an exhaustive match below, we are more resilient to definition updates (the compiler is our friend). *) method! visit_loan_content env lc = match lc with | V.VSharedLoan (bids, sv) -> (* Check if this is the loan we are looking for, and control the dive *) if V.BorrowId.Set.mem l bids then raise (FoundGLoanContent (Concrete lc)) else if ek.enter_shared_loans then super#visit_VSharedLoan env bids sv else () | V.VMutLoan bid -> (* Check if this is the loan we are looking for *) if bid = l then raise (FoundGLoanContent (Concrete lc)) else super#visit_VMutLoan env bid (** Note that we don't control diving inside the abstractions: if we allow to dive inside abstractions, we allow to go anywhere (because there are no use cases requiring finer control) *) method! visit_aloan_content env lc = match lc with | V.AMutLoan (bid, av) -> if bid = l then raise (FoundGLoanContent (Abstract lc)) else super#visit_AMutLoan env bid av | V.ASharedLoan (bids, v, av) -> if V.BorrowId.Set.mem l bids then raise (FoundGLoanContent (Abstract lc)) else super#visit_ASharedLoan env bids v av | V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ } | V.AEndedSharedLoan (_, _) | V.AIgnoredMutLoan (_, _) | V.AEndedIgnoredMutLoan { given_back = _; child = _; given_back_meta = _ } | V.AIgnoredSharedLoan _ -> super#visit_aloan_content env lc method! visit_EBinding env bv v = assert (Option.is_none !abs_or_var); abs_or_var := Some (match bv with | BVar b -> VarId b.C.index | BDummy id -> DummyVarId id); super#visit_EBinding env bv v; abs_or_var := None method! visit_EAbs env abs = assert (Option.is_none !abs_or_var); if ek.enter_abs then ( abs_or_var := Some (AbsId abs.V.abs_id); super#visit_EAbs env abs; abs_or_var := None) else () end in (* We use exceptions *) try obj#visit_eval_ctx () ctx; None with FoundGLoanContent lc -> ( match !abs_or_var with | Some abs_or_var -> Some (abs_or_var, lc) | None -> raise (Failure "Inconsistent state")) (** Lookup a loan content. The loan is referred to by a borrow id. Raises an exception if no loan was found. *) let lookup_loan (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) : abs_or_var_id * g_loan_content = match lookup_loan_opt ek l ctx with | None -> raise (Failure "Unreachable") | Some res -> res (** Update a loan content. The loan is referred to by a borrow id. This is a helper function: it might break invariants. *) let update_loan (ek : exploration_kind) (l : V.BorrowId.id) (nlc : V.loan_content) (ctx : C.eval_ctx) : C.eval_ctx = (* We use a reference to check that we update exactly one loan: when updating * inside values, we check we don't update more than one loan. Then, upon * returning we check that we updated at least once. *) let r = ref false in let update () : V.loan_content = assert (not !r); r := true; nlc in let obj = object inherit [_] C.map_eval_ctx as super method! visit_borrow_content env bc = match bc with | VSharedBorrow _ | VReservedMutBorrow _ -> (* Nothing specific to do *) super#visit_borrow_content env bc | VMutBorrow (bid, mv) -> (* Control the dive into mutable borrows *) if ek.enter_mut_borrows then super#visit_VMutBorrow env bid mv else VMutBorrow (bid, mv) (** We reimplement {!visit_loan_content} (rather than one of the sub- functions) on purpose: exhaustive matches are good for maintenance *) method! visit_loan_content env lc = match lc with | VSharedLoan (bids, sv) -> (* Shared loan: check if this is the loan we are looking for, and control the dive. *) if V.BorrowId.Set.mem l bids then update () else if ek.enter_shared_loans then super#visit_VSharedLoan env bids sv else VSharedLoan (bids, sv) | VMutLoan bid -> (* Mut loan: checks if this is the loan we are looking for *) if bid = l then update () else super#visit_VMutLoan env bid (** Note that once inside the abstractions, we don't control diving (there are no use cases requiring finer control). Also, as we give back a {!loan_content} (and not an {!aloan_content}) we don't need to do reimplement the visit functions for the values inside the abstractions (rk.: there may be "concrete" values inside abstractions, so there is a utility in diving inside). *) method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else abs end in let ctx = obj#visit_eval_ctx () ctx in (* Check that we updated at least one loan *) assert !r; ctx (** Update a abstraction loan content. The loan is referred to by a borrow id. This is a helper function: it might break invariants. *) let update_aloan (ek : exploration_kind) (l : V.BorrowId.id) (nlc : V.aloan_content) (ctx : C.eval_ctx) : C.eval_ctx = (* We use a reference to check that we update exactly one loan: when updating * inside values, we check we don't update more than one loan. Then, upon * returning we check that we updated at least once. *) let r = ref false in let update () : V.aloan_content = assert (not !r); r := true; nlc in let obj = object inherit [_] C.map_eval_ctx as super method! visit_aloan_content env lc = match lc with | V.AMutLoan (bid, av) -> if bid = l then update () else super#visit_AMutLoan env bid av | V.ASharedLoan (bids, v, av) -> if V.BorrowId.Set.mem l bids then update () else super#visit_ASharedLoan env bids v av | V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ } | V.AEndedSharedLoan (_, _) | V.AIgnoredMutLoan (_, _) | V.AEndedIgnoredMutLoan { given_back = _; child = _; given_back_meta = _ } | V.AIgnoredSharedLoan _ -> super#visit_aloan_content env lc (** Note that once inside the abstractions, we don't control diving (there are no use cases requiring finer control). *) method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else abs end in let ctx = obj#visit_eval_ctx () ctx in (* Check that we updated at least one loan *) assert !r; ctx (** Lookup a borrow content from a borrow id. *) let lookup_borrow_opt (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) : g_borrow_content option = let obj = object inherit [_] C.iter_eval_ctx as super method! visit_borrow_content env bc = match bc with | VMutBorrow (bid, mv) -> (* Check the borrow id and control the dive *) if bid = l then raise (FoundGBorrowContent (Concrete bc)) else if ek.enter_mut_borrows then super#visit_VMutBorrow env bid mv else () | VSharedBorrow bid -> (* Check the borrow id *) if bid = l then raise (FoundGBorrowContent (Concrete bc)) else () | VReservedMutBorrow bid -> (* Check the borrow id *) if bid = l then raise (FoundGBorrowContent (Concrete bc)) else () method! visit_loan_content env lc = match lc with | VMutLoan bid -> (* Nothing special to do *) super#visit_VMutLoan env bid | VSharedLoan (bids, sv) -> (* Control the dive *) if ek.enter_shared_loans then super#visit_VSharedLoan env bids sv else () method! visit_aborrow_content env bc = match bc with | AMutBorrow (bid, av) -> if bid = l then raise (FoundGBorrowContent (Abstract bc)) else super#visit_AMutBorrow env bid av | ASharedBorrow bid -> if bid = l then raise (FoundGBorrowContent (Abstract bc)) else super#visit_ASharedBorrow env bid | AIgnoredMutBorrow (_, _) | AEndedMutBorrow _ | AEndedIgnoredMutBorrow { given_back = _; child = _; given_back_meta = _ } | AEndedSharedBorrow -> super#visit_aborrow_content env bc | AProjSharedBorrow asb -> if borrow_in_asb l asb then raise (FoundGBorrowContent (Abstract bc)) else () method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else () end in (* We use exceptions *) try obj#visit_eval_ctx () ctx; None with FoundGBorrowContent lc -> Some lc (** Lookup a borrow content from a borrow id. Raise an exception if no loan was found *) let lookup_borrow (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) : g_borrow_content = match lookup_borrow_opt ek l ctx with | None -> raise (Failure "Unreachable") | Some lc -> lc (** Update a borrow content. The borrow is referred to by a borrow id. This is a helper function: it might break invariants. *) let update_borrow (ek : exploration_kind) (l : V.BorrowId.id) (nbc : V.borrow_content) (ctx : C.eval_ctx) : C.eval_ctx = (* We use a reference to check that we update exactly one borrow: when updating * inside values, we check we don't update more than one borrow. Then, upon * returning we check that we updated at least once. *) let r = ref false in let update () : V.borrow_content = assert (not !r); r := true; nbc in let obj = object inherit [_] C.map_eval_ctx as super method! visit_borrow_content env bc = match bc with | VMutBorrow (bid, mv) -> (* Check the id and control dive *) if bid = l then update () else if ek.enter_mut_borrows then super#visit_VMutBorrow env bid mv else VMutBorrow (bid, mv) | VSharedBorrow bid -> (* Check the id *) if bid = l then update () else super#visit_VSharedBorrow env bid | VReservedMutBorrow bid -> (* Check the id *) if bid = l then update () else super#visit_VReservedMutBorrow env bid method! visit_loan_content env lc = match lc with | VSharedLoan (bids, sv) -> (* Control the dive *) if ek.enter_shared_loans then super#visit_VSharedLoan env bids sv else VSharedLoan (bids, sv) | VMutLoan bid -> (* Nothing specific to do *) super#visit_VMutLoan env bid method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else abs end in let ctx = obj#visit_eval_ctx () ctx in (* Check that we updated at least one borrow *) assert !r; ctx (** Update an abstraction borrow content. The borrow is referred to by a borrow id. This is a helper function: it might break invariants. *) let update_aborrow (ek : exploration_kind) (l : V.BorrowId.id) (nv : V.avalue) (ctx : C.eval_ctx) : C.eval_ctx = (* We use a reference to check that we update exactly one borrow: when updating * inside values, we check we don't update more than one borrow. Then, upon * returning we check that we updated at least once. *) let r = ref false in let update () : V.avalue = assert (not !r); r := true; nv in let obj = object inherit [_] C.map_eval_ctx as super method! visit_ABorrow env bc = match bc with | V.AMutBorrow (bid, av) -> if bid = l then update () else V.ABorrow (super#visit_AMutBorrow env bid av) | V.ASharedBorrow bid -> if bid = l then update () else V.ABorrow (super#visit_ASharedBorrow env bid) | V.AIgnoredMutBorrow _ | V.AEndedMutBorrow _ | V.AEndedSharedBorrow | V.AEndedIgnoredMutBorrow _ -> super#visit_ABorrow env bc | V.AProjSharedBorrow asb -> if borrow_in_asb l asb then update () else V.ABorrow (super#visit_AProjSharedBorrow env asb) method! visit_abs env abs = if ek.enter_abs then super#visit_abs env abs else abs end in let ctx = obj#visit_eval_ctx () ctx in (* Check that we updated at least one borrow *) assert !r; ctx (** Auxiliary function: see its usage in [end_borrow_get_borrow_in_value] *) let update_outer_borrows (outer : V.AbstractionId.id option * borrow_ids option) (x : borrow_ids) : V.AbstractionId.id option * borrow_ids option = let abs, opt = outer in (abs, update_if_none opt x) (** Return the first loan we find in a value *) let get_first_loan_in_value (v : V.typed_value) : V.loan_content option = let obj = object inherit [_] V.iter_typed_value method! visit_loan_content _ lc = raise (FoundLoanContent lc) end in (* We use exceptions *) try obj#visit_typed_value () v; None with FoundLoanContent lc -> Some lc (** Return the first loan we find in a list of values *) let get_first_loan_in_values (vs : V.typed_value list) : V.loan_content option = let obj = object inherit [_] V.iter_typed_value method! visit_loan_content _ lc = raise (FoundLoanContent lc) end in (* We use exceptions *) try List.iter (obj#visit_typed_value ()) vs; None with FoundLoanContent lc -> Some lc (** Return the first borrow we find in a value *) let get_first_borrow_in_value (v : V.typed_value) : V.borrow_content option = let obj = object inherit [_] V.iter_typed_value method! visit_borrow_content _ bc = raise (FoundBorrowContent bc) end in (* We use exceptions *) try obj#visit_typed_value () v; None with FoundBorrowContent bc -> Some bc (** Return the first loan or borrow content we find in a value (starting with the outer ones). [with_borrows]: - if [true]: return the first loan or borrow we find - if [false]: return the first loan we find, do not dive into borrowed values *) let get_first_outer_loan_or_borrow_in_value (with_borrows : bool) (v : V.typed_value) : loan_or_borrow_content option = let obj = object inherit [_] V.iter_typed_value method! visit_borrow_content _ bc = if with_borrows then raise (FoundBorrowContent bc) else () method! visit_loan_content _ lc = raise (FoundLoanContent lc) end in (* We use exceptions *) try obj#visit_typed_value () v; None with | FoundLoanContent lc -> Some (LoanContent lc) | FoundBorrowContent bc -> Some (BorrowContent bc) type gproj_borrows = | AProjBorrows of V.AbstractionId.id * V.symbolic_value | ProjBorrows of V.symbolic_value let proj_borrows_intersects_proj_loans (proj_borrows : T.RegionId.Set.t * V.symbolic_value * T.rty) (proj_loans : T.RegionId.Set.t * V.symbolic_value) : bool = let b_regions, b_sv, b_ty = proj_borrows in let l_regions, l_sv = proj_loans in if same_symbolic_id b_sv l_sv then projections_intersect l_sv.V.sv_ty l_regions b_ty b_regions else false (** Result of looking up aproj_borrows which intersect a given aproj_loans in the context. Note that because we we force the expansion of primitively copyable values before giving them to abstractions, we only have the following possibilities: - no aproj_borrows, in which case the symbolic value was either dropped or is in the context - exactly one aproj_borrows over a non-shared value - potentially several aproj_borrows over shared values The result contains the ids of the abstractions in which the projectors were found, as well as the projection types used in those abstractions. *) type looked_up_aproj_borrows = | NonSharedProj of V.AbstractionId.id * T.rty | SharedProjs of (V.AbstractionId.id * T.rty) list (** Lookup the aproj_borrows (including aproj_shared_borrows) over a symbolic value which intersect a given set of regions. [lookup_shared]: if [true] also explore projectors over shared values, otherwise ignore. This is a helper function. *) let lookup_intersecting_aproj_borrows_opt (lookup_shared : bool) (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) : looked_up_aproj_borrows option = let found : looked_up_aproj_borrows option ref = ref None in let set_non_shared ((id, ty) : V.AbstractionId.id * T.rty) : unit = match !found with | None -> found := Some (NonSharedProj (id, ty)) | Some _ -> raise (Failure "Unreachable") in let add_shared (x : V.AbstractionId.id * T.rty) : unit = match !found with | None -> found := Some (SharedProjs [ x ]) | Some (SharedProjs pl) -> found := Some (SharedProjs (x :: pl)) | Some (NonSharedProj _) -> raise (Failure "Unreachable") in let check_add_proj_borrows (is_shared : bool) abs sv' proj_ty = if proj_borrows_intersects_proj_loans (abs.V.regions, sv', proj_ty) (regions, sv) then let x = (abs.abs_id, proj_ty) in if is_shared then add_shared x else set_non_shared x else () in let obj = object inherit [_] C.iter_eval_ctx as super method! visit_abs _ abs = super#visit_abs (Some abs) abs method! visit_abstract_shared_borrow abs asb = (* Sanity check *) (match !found with | Some (NonSharedProj _) -> raise (Failure "Unreachable") | _ -> ()); (* Explore *) if lookup_shared then let abs = Option.get abs in match asb with | V.AsbBorrow _ -> () | V.AsbProjReborrows (sv', proj_ty) -> let is_shared = true in check_add_proj_borrows is_shared abs sv' proj_ty else () method! visit_aproj abs sproj = (let abs = Option.get abs in match sproj with | AProjLoans _ | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> () | AProjBorrows (sv', proj_rty) -> let is_shared = false in check_add_proj_borrows is_shared abs sv' proj_rty); super#visit_aproj abs sproj end in (* Visit *) obj#visit_eval_ctx None ctx; (* Return *) !found (** Lookup the aproj_borrows (not aproj_borrows_shared!) over a symbolic value which intersects a given set of regions. Note that there should be **at most one** (one reason is that we force the expansion of primitively copyable values before giving them to abstractions). Returns the id of the owning abstraction, and the projection type used in this abstraction. *) let lookup_intersecting_aproj_borrows_not_shared_opt (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) : (V.AbstractionId.id * T.rty) option = let lookup_shared = false in match lookup_intersecting_aproj_borrows_opt lookup_shared regions sv ctx with | None -> None | Some (NonSharedProj (abs_id, rty)) -> Some (abs_id, rty) | _ -> raise (Failure "Unexpected") (** Similar to {!lookup_intersecting_aproj_borrows_opt}, but updates the values. This is a helper function: it might break invariants. *) let update_intersecting_aproj_borrows (can_update_shared : bool) (update_shared : V.AbstractionId.id -> T.rty -> V.abstract_shared_borrows) (update_non_shared : V.AbstractionId.id -> T.rty -> V.aproj) (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) : C.eval_ctx = (* Small helpers for sanity checks *) let shared = ref None in let add_shared () = match !shared with None -> shared := Some true | Some b -> assert b in let set_non_shared () = match !shared with | None -> shared := Some false | Some _ -> raise (Failure "Found unexpected intersecting proj_borrows") in let check_proj_borrows is_shared abs sv' proj_ty = if proj_borrows_intersects_proj_loans (abs.V.regions, sv', proj_ty) (regions, sv) then ( if is_shared then add_shared () else set_non_shared (); true) else false in (* The visitor *) let obj = object inherit [_] C.map_eval_ctx as super method! visit_abs _ abs = super#visit_abs (Some abs) abs method! visit_abstract_shared_borrows abs asb = (* Sanity check *) (match !shared with Some b -> assert b | _ -> ()); (* Explore *) if can_update_shared then let abs = Option.get abs in let update (asb : V.abstract_shared_borrow) : V.abstract_shared_borrows = match asb with | V.AsbBorrow _ -> [ asb ] | V.AsbProjReborrows (sv', proj_ty) -> let is_shared = true in if check_proj_borrows is_shared abs sv' proj_ty then update_shared abs.abs_id proj_ty else [ asb ] in List.concat (List.map update asb) else asb method! visit_aproj abs sproj = match sproj with | AProjLoans _ | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> super#visit_aproj abs sproj | AProjBorrows (sv', proj_rty) -> let abs = Option.get abs in let is_shared = true in if check_proj_borrows is_shared abs sv' proj_rty then update_non_shared abs.abs_id proj_rty else super#visit_aproj (Some abs) sproj end in (* Apply *) let ctx = obj#visit_eval_ctx None ctx in (* Check that we updated the context at least once *) assert (Option.is_some !shared); (* Return *) ctx (** Simply calls {!update_intersecting_aproj_borrows} to update a proj_borrows over a non-shared value. We check that we update *at least* one proj_borrows. This is a helper function: it might break invariants. *) let update_intersecting_aproj_borrows_non_shared (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (nv : V.aproj) (ctx : C.eval_ctx) : C.eval_ctx = (* Small helpers *) let can_update_shared = false in let update_shared _ _ = raise (Failure "Unexpected") in let updated = ref false in let update_non_shared _ _ = (* We can update more than one borrow! *) updated := true; nv in (* Update *) let ctx = update_intersecting_aproj_borrows can_update_shared update_shared update_non_shared regions sv ctx in (* Check that we updated at least once *) assert !updated; (* Return *) ctx (** Simply calls {!update_intersecting_aproj_borrows} to remove the proj_borrows over shared values. This is a helper function: it might break invariants. *) let remove_intersecting_aproj_borrows_shared (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) : C.eval_ctx = (* Small helpers *) let can_update_shared = true in let update_shared _ _ = [] in let update_non_shared _ _ = raise (Failure "Unexpected") in (* Update *) update_intersecting_aproj_borrows can_update_shared update_shared update_non_shared regions sv ctx (** Updates the proj_loans intersecting some projection. This is a helper function: it might break invariants. Note that we can update more than one projector of loans! Consider the following example: {[ fn f<'a, 'b>(...) -> (&'a mut u32, &'b mut u32)); fn g<'c>(&'c mut u32, &'c mut u32); let p = f(...); g(move p); // Symbolic context after the call to g: // abs'a {'a} { [s@0 <: (&'a mut u32, &'b mut u32)] } // abs'b {'b} { [s@0 <: (&'a mut u32, &'b mut u32)] } // // abs'c {'c} { (s@0 <: (&'c mut u32, &'c mut u32)) } ]} Note that for sanity, this function checks that we update *at least* one projector of loans. [proj_ty]: shouldn't contain erased regions. [subst]: takes as parameters the abstraction in which we perform the substitution and the list of given back values at the projector of loans where we perform the substitution (see the fields in {!V.AProjLoans}). Note that the symbolic value at this place is necessarily equal to [sv], which is why we don't give it as parameters. *) let update_intersecting_aproj_loans (proj_regions : T.RegionId.Set.t) (proj_ty : T.rty) (sv : V.symbolic_value) (subst : V.abs -> (V.msymbolic_value * V.aproj) list -> V.aproj) (ctx : C.eval_ctx) : C.eval_ctx = (* *) assert (ty_is_rty proj_ty); (* Small helpers for sanity checks *) let updated = ref false in let update abs local_given_back : V.aproj = (* Note that we can update more than once! *) updated := true; subst abs local_given_back in (* The visitor *) let obj = object inherit [_] C.map_eval_ctx as super method! visit_abs _ abs = super#visit_abs (Some abs) abs method! visit_aproj abs sproj = match sproj with | AProjBorrows _ | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> super#visit_aproj abs sproj | AProjLoans (sv', given_back) -> let abs = Option.get abs in if same_symbolic_id sv sv' then ( assert (sv.sv_ty = sv'.sv_ty); if projections_intersect proj_ty proj_regions sv'.V.sv_ty abs.regions then update abs given_back else super#visit_aproj (Some abs) sproj) else super#visit_aproj (Some abs) sproj end in (* Apply *) let ctx = obj#visit_eval_ctx None ctx in (* Check that we updated the context at least once *) assert !updated; (* Return *) ctx (** Helper function: lookup an {!V.AProjLoans} by using an abstraction id and a symbolic value. We return the information from the looked up projector of loans. See the fields in {!V.AProjLoans} (we don't return the symbolic value, because it is equal to [sv]). Sanity check: we check that there is exactly one projector which corresponds to the couple (abstraction id, symbolic value). *) let lookup_aproj_loans (abs_id : V.AbstractionId.id) (sv : V.symbolic_value) (ctx : C.eval_ctx) : (V.msymbolic_value * V.aproj) list = (* Small helpers for sanity checks *) let found = ref None in let set_found x = (* There is at most one projector which corresponds to the description *) assert (Option.is_none !found); found := Some x in (* The visitor *) let obj = object inherit [_] C.iter_eval_ctx as super method! visit_abs _ abs = if abs.abs_id = abs_id then super#visit_abs (Some abs) abs else () method! visit_aproj (abs : V.abs option) sproj = (match sproj with | AProjBorrows _ | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> super#visit_aproj abs sproj | AProjLoans (sv', given_back) -> let abs = Option.get abs in assert (abs.abs_id = abs_id); if sv'.sv_id = sv.sv_id then ( assert (sv' = sv); set_found given_back) else ()); super#visit_aproj abs sproj end in (* Apply *) obj#visit_eval_ctx None ctx; (* Return *) Option.get !found (** Helper function: might break invariants. Update a projector over loans. The projector is identified by a symbolic value and an abstraction id. Sanity check: we check that there is exactly one projector which corresponds to the couple (abstraction id, symbolic value). *) let update_aproj_loans (abs_id : V.AbstractionId.id) (sv : V.symbolic_value) (nproj : V.aproj) (ctx : C.eval_ctx) : C.eval_ctx = (* Small helpers for sanity checks *) let found = ref false in let update () = (* We update at most once *) assert (not !found); found := true; nproj in (* The visitor *) let obj = object inherit [_] C.map_eval_ctx as super method! visit_abs _ abs = if abs.abs_id = abs_id then super#visit_abs (Some abs) abs else abs method! visit_aproj (abs : V.abs option) sproj = match sproj with | AProjBorrows _ | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> super#visit_aproj abs sproj | AProjLoans (sv', _) -> let abs = Option.get abs in assert (abs.abs_id = abs_id); if sv'.sv_id = sv.sv_id then ( assert (sv' = sv); update ()) else super#visit_aproj (Some abs) sproj end in (* Apply *) let ctx = obj#visit_eval_ctx None ctx in (* Sanity check *) assert !found; (* Return *) ctx (** Helper function: might break invariants. Update a projector over borrows. The projector is identified by a symbolic value and an abstraction id. Sanity check: we check that there is exactly one projector which corresponds to the couple (abstraction id, symbolic value). TODO: factorize with {!update_aproj_loans}? *) let update_aproj_borrows (abs_id : V.AbstractionId.id) (sv : V.symbolic_value) (nproj : V.aproj) (ctx : C.eval_ctx) : C.eval_ctx = (* Small helpers for sanity checks *) let found = ref false in let update () = (* We update at most once *) assert (not !found); found := true; nproj in (* The visitor *) let obj = object inherit [_] C.map_eval_ctx as super method! visit_abs _ abs = if abs.abs_id = abs_id then super#visit_abs (Some abs) abs else abs method! visit_aproj (abs : V.abs option) sproj = match sproj with | AProjLoans _ | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> super#visit_aproj abs sproj | AProjBorrows (sv', _proj_ty) -> let abs = Option.get abs in assert (abs.abs_id = abs_id); if sv'.sv_id = sv.sv_id then ( assert (sv' = sv); update ()) else super#visit_aproj (Some abs) sproj end in (* Apply *) let ctx = obj#visit_eval_ctx None ctx in (* Sanity check *) assert !found; (* Return *) ctx (** Helper function: might break invariants. Converts an {!V.AProjLoans} to an {!V.AEndedProjLoans}. The projector is identified by a symbolic value and an abstraction id. *) let update_aproj_loans_to_ended (abs_id : V.AbstractionId.id) (sv : V.symbolic_value) (ctx : C.eval_ctx) : C.eval_ctx = (* Lookup the projector of loans *) let given_back = lookup_aproj_loans abs_id sv ctx in (* Create the new value for the projector *) let nproj = V.AEndedProjLoans (sv, given_back) in (* Insert it *) let ctx = update_aproj_loans abs_id sv nproj ctx in (* Return *) ctx let no_aproj_over_symbolic_in_context (sv : V.symbolic_value) (ctx : C.eval_ctx) : unit = (* The visitor *) let obj = object inherit [_] C.iter_eval_ctx as super method! visit_aproj env sproj = (match sproj with | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> () | AProjLoans (sv', _) | AProjBorrows (sv', _) -> if sv'.sv_id = sv.sv_id then raise Found else ()); super#visit_aproj env sproj end in (* Apply *) try obj#visit_eval_ctx () ctx with Found -> raise (Failure "update_aproj_loans_to_ended: failed") (** Helper function Return the loan (aloan, loan, proj_loans over a symbolic value) we find in an abstraction, if there is. **Remark:** we don't take the *ignored* mut/shared loans into account. *) let get_first_non_ignored_aloan_in_abstraction (abs : V.abs) : borrow_ids_or_symbolic_value option = (* Explore to find a loan *) let obj = object inherit [_] V.iter_abs as super method! visit_aloan_content env lc = match lc with | V.AMutLoan (bid, _) -> raise (FoundBorrowIds (Borrow bid)) | V.ASharedLoan (bids, _, _) -> raise (FoundBorrowIds (Borrows bids)) | V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ } | V.AEndedSharedLoan (_, _) -> super#visit_aloan_content env lc | V.AIgnoredMutLoan (_, _) -> (* Ignore *) super#visit_aloan_content env lc | V.AEndedIgnoredMutLoan { given_back = _; child = _; given_back_meta = _ } | V.AIgnoredSharedLoan _ -> (* Ignore *) super#visit_aloan_content env lc (** We may need to visit loan contents because of shared values *) method! visit_loan_content _ lc = match lc with | VMutLoan _ -> (* The mut loan linked to the mutable borrow present in a shared * value in an abstraction should be in an AProjBorrows *) raise (Failure "Unreachable") | VSharedLoan (bids, _) -> raise (FoundBorrowIds (Borrows bids)) method! visit_aproj env sproj = (match sproj with | AProjBorrows (_, _) | AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> () | AProjLoans (sv, _) -> raise (ValuesUtils.FoundSymbolicValue sv)); super#visit_aproj env sproj end in try (* Check if there are loans *) obj#visit_abs () abs; (* No loans *) None with (* There are loans *) | FoundBorrowIds bids -> Some (BorrowIds bids) | ValuesUtils.FoundSymbolicValue sv -> (* There are loan projections over symbolic values *) Some (SymbolicValue sv) let lookup_shared_value_opt (ctx : C.eval_ctx) (bid : V.BorrowId.id) : V.typed_value option = match lookup_loan_opt ek_all bid ctx with | None -> None | Some (_, lc) -> ( match lc with | Concrete (VSharedLoan (_, sv)) | Abstract (ASharedLoan (_, sv, _)) -> Some sv | _ -> None) let lookup_shared_value (ctx : C.eval_ctx) (bid : V.BorrowId.id) : V.typed_value = Option.get (lookup_shared_value_opt ctx bid)