(** Utilities for extracting names *) open Charon.NameMatcher let log = Logging.extract_log module NameMatcherMap = struct module NMM = NameMatcherMap type 'a t = 'a NMM.t let config = { map_vars_to_vars = true } let find_opt (ctx : ctx) (name : Types.name) (m : 'a t) : 'a option = NMM.find_opt ctx config name m let find_with_generics_opt (ctx : ctx) (name : Types.name) (g : Types.generic_args) (m : 'a t) : 'a option = NMM.find_with_generics_opt ctx config name g m let mem (ctx : ctx) (name : Types.name) (m : 'a t) : bool = NMM.mem ctx config name m let of_list (ls : (pattern * 'a) list) : 'a t = NMM.of_list ls let to_string = NMM.to_string end (** Helper to convert name patterns to names for extraction. For impl blocks, we simply use the name of the type (without its arguments) if all the arguments are variables. *) let pattern_to_extract_name (is_trait_impl : bool) (name : pattern) : string list = let c = { tgt = TkName } in let is_var (g : generic_arg) : bool = match g with | GExpr (EVar _) -> true | GRegion (RVar _) -> true | _ -> false in let all_vars = List.for_all is_var in let elem_to_string (e : pattern_elem) : string = match e with | PIdent _ -> pattern_elem_to_string c e | PImpl ty -> ( match ty with | EComp id -> ( (* Retrieve the last ident *) let id = Collections.List.last id in match id with | PIdent (s, g) -> if all_vars g then s else pattern_elem_to_string c id | PImpl _ -> raise (Failure "Unreachable")) | EPrimAdt (adt, g) -> if all_vars g then match adt with | TTuple -> let l = List.length g in if l = 2 then "Pair" else expr_to_string c ty | TArray -> "Array" | TSlice -> "Slice" else expr_to_string c ty | ERef _ | EVar _ -> raise (Failure "")) in let rec pattern_to_string (n : pattern) : string list = match n with | [] -> raise (Failure "Unreachable") | [ e ] -> let e = elem_to_string e in if is_trait_impl then [ e ^ "Inst" ] else [ e ] | e :: n -> elem_to_string e :: pattern_to_string n in pattern_to_string name let pattern_to_fun_extract_name = pattern_to_extract_name false let pattern_to_trait_impl_extract_name = pattern_to_extract_name true (* TODO: this is provisional. We just want to make sure that the extraction names we derive from the patterns (for the builtin definitions) are consistent with the extraction names we derive from the Rust names *) let name_to_simple_name (ctx : ctx) (is_trait_impl : bool) (n : Types.name) : string list = let c : to_pat_config = { tgt = TkName } in pattern_to_extract_name is_trait_impl (name_to_pattern ctx c n) (** If the [prefix] is Some, we attempt to remove the common prefix between [prefix] and [name] from [name] *) let name_with_generics_to_simple_name (ctx : ctx) (is_trait_impl : bool) ?(prefix : Types.name option = None) (name : Types.name) (p : Types.generic_params) (g : Types.generic_args) : string list = let c : to_pat_config = { tgt = TkName } in let name = name_with_generics_to_pattern ctx c name p g in let name = match prefix with | None -> name | Some prefix -> let prefix = name_with_generics_to_pattern ctx c prefix TypesUtils.empty_generic_params TypesUtils.empty_generic_args in let _, _, name = pattern_common_prefix prefix name in name in pattern_to_extract_name is_trait_impl name (* (* Prepare a name. The first id elem is always the crate: if it is the local crate, we remove it. We ignore disambiguators (there may be collisions, but we check if there are). *) let rec name_to_simple_name (name : llbc_name) : string list = (* Rmk.: initially we only filtered the disambiguators equal to 0 *) match name with | (PeIdent (crate, _) as id) :: name -> let name = if crate = crate_name then name else id :: name in let open Types in let name = List.map (function | PeIdent (s, _) -> s | PeImpl impl -> impl_elem_to_simple_name impl) name in name | _ -> raise (Failure ("Unexpected name shape: " ^ TranslateCore.name_to_string ctx name)) and impl_elem_to_simple_name (impl : Types.impl_elem) : string = (* We do something simple for now. TODO: we might want to do something different for impl elements which are actually trait implementations, in order to prevent name collisions (it is possible to define several times the same trait for the same type, but with different instantiations of the type, or different trait requirements *) ty_to_simple_name impl.generics impl.ty and ty_to_simple_name (generics : Types.generic_params) (ty : Types.ty) : string = (* We do something simple for now. TODO: find a more principled way of converting types to names. In particular, we might want to do something different for impl elements which are actually trait implementations, in order to prevent name collisions (it is possible to define several times the same trait for the same type, but with different instantiations of the type, or different trait requirements *) match ty with | TAdt (id, args) -> ( match id with | TAdtId id -> let def = TypeDeclId.Map.find id ctx.type_ctx.type_decls in name_last_elem_as_ident def.name | TTuple -> (* TODO *) "Tuple" ^ String.concat "" (List.map (ty_to_simple_name generics) args.types) | TAssumed id -> ( match id with | Types.TBox -> "Box" | Types.TArray -> "Array" | Types.TSlice -> "Slice" | Types.TStr -> "Str")) | TVar vid -> (* Use the variable name *) (List.find (fun (v : type_var) -> v.index = vid) generics.types).name | TLiteral lty -> StringUtils.capitalize_first_letter (Print.Types.literal_type_to_string lty) | TNever -> raise (Failure "Unreachable") | TRef (_, rty, rk) -> ( let rty = ty_to_simple_name generics rty in match rk with | RMut -> "MutBorrow" ^ rty | RShared -> "SharedBorrow" ^ rty) | TRawPtr (rty, rk) -> ( let rty = ty_to_simple_name generics rty in match rk with RMut -> "MutPtr" ^ rty | RShared -> "ConstPtr" ^ rty) | TTraitType (tr, _, name) -> (* TODO: this is way too simple *) let trait_decl = TraitDeclId.Map.find tr.trait_decl_ref.trait_decl_id ctx.trait_decls_ctx.trait_decls in name_last_elem_as_ident trait_decl.name ^ name | TArrow (inputs, output) -> "Arrow" ^ String.concat "" (List.map (ty_to_simple_name generics) (inputs @ [ output ])) in *)