(** This module contains various utilities for the assumed functions. Note that [Box::free] is peculiar: we don't really handle it as a function, because it is legal to free a box whose boxed value is [⊥] (it often happens that we move a value out of a box before freeing this box). Semantically speaking, we thus handle [Box::free] as a value drop and not as a function call, and thus never need its signature. TODO: implementing the concrete evaluation functions for the assumed functions is really annoying (see [InterpreterStatements.eval_non_local_function_call_concrete]), I think it should be possible, in most situations, to write bodies which model the behaviour of those unsafe functions. For instance, [Box::deref_mut] should simply be: {[ fn deref_mut<'a, T>(x : &'a mut Box) -> &'a mut T { &mut ( *x ) // box dereferencement is a primitive operation } ]} For vectors, we could "cheat" by using the index as a field index (vectors would be encoded as ADTs with a variable number of fields). Of course, it would require a bit of engineering, but it would probably be quite lightweight in the end. {[ Vec::get_mut<'a,T>(v : &'a mut Vec, i : usize) -> &'a mut T { &mut ( ( *x ).i ) } ]} *) open Names open TypesUtils module T = Types module A = LlbcAst module Sig = struct (** A few utilities *) let rvar_id_0 = T.RegionVarId.of_int 0 let rvar_0 : T.RegionVarId.id T.region = T.Var rvar_id_0 let rg_id_0 = T.RegionGroupId.of_int 0 let tvar_id_0 = T.TypeVarId.of_int 0 let tvar_0 : T.sty = T.TypeVar tvar_id_0 let cgvar_id_0 = T.ConstGenericVarId.of_int 0 let cgvar_0 : T.const_generic = T.ConstGenericVar cgvar_id_0 (** Region 'a of id 0 *) let region_param_0 : T.region_var = { T.index = rvar_id_0; name = Some "'a" } (** Region group: [{ parent={}; regions:{'a of id 0} }] *) let region_group_0 : T.region_var_group = { T.id = rg_id_0; regions = [ rvar_id_0 ]; parents = [] } (** Type parameter [T] of id 0 *) let type_param_0 : T.type_var = { T.index = tvar_id_0; name = "T" } let usize_ty : T.sty = T.Literal (Integer Usize) (** Const generic parameter [const N : usize] of id 0 *) let cg_param_0 : T.const_generic_var = { T.index = cgvar_id_0; name = "N"; ty = Integer Usize } let empty_const_generic_params : T.const_generic_var list = [] let mk_generic_args regions types const_generics : T.sgeneric_args = { regions; types; const_generics; trait_refs = [] } let mk_generic_params regions types const_generics : T.generic_params = { regions; types; const_generics; trait_clauses = [] } let mk_ref_ty (r : T.RegionVarId.id T.region) (ty : T.sty) (is_mut : bool) : T.sty = let ref_kind = if is_mut then T.Mut else T.Shared in mk_ref_ty r ty ref_kind let mk_array_ty (ty : T.sty) (cg : T.const_generic) : T.sty = Adt (Assumed Array, mk_generic_args [] [ ty ] [ cg ]) let mk_slice_ty (ty : T.sty) : T.sty = Adt (Assumed Slice, mk_generic_args [] [ ty ] []) let mk_sig generics regions_hierarchy inputs output : A.fun_sig = let preds : T.predicates = { regions_outlive = []; types_outlive = []; trait_type_constraints = [] } in { generics; preds; parent_params_info = None; regions_hierarchy; inputs; output; } (** [fn(T) -> Box] *) let box_new_sig : A.fun_sig = let generics = mk_generic_params [] [ type_param_0 ] [] (* *) in let regions_hierarchy = [] in let inputs = [ tvar_0 (* T *) ] in let output = mk_box_ty tvar_0 (* Box *) in mk_sig generics regions_hierarchy inputs output (** [fn(Box) -> ()] *) let box_free_sig : A.fun_sig = let generics = mk_generic_params [] [ type_param_0 ] [] (* *) in let regions_hierarchy = [] in let inputs = [ mk_box_ty tvar_0 (* Box *) ] in let output = mk_unit_ty (* () *) in mk_sig generics regions_hierarchy inputs output (** Array/slice functions *) (** Small helper. Return the type: {[ fn<'a, T>(&'a input_ty, index_ty) -> &'a output_ty ]} Remarks: The [input_ty] and [output_ty] are parameterized by a type variable id. The [mut_borrow] boolean controls whether we use a shared or a mutable borrow. *) let mk_array_slice_borrow_sig (cgs : T.const_generic_var list) (input_ty : T.TypeVarId.id -> T.sty) (index_ty : T.sty option) (output_ty : T.TypeVarId.id -> T.sty) (is_mut : bool) : A.fun_sig = let generics = mk_generic_params [ region_param_0 ] [ type_param_0 ] cgs (* <'a, T> *) in let regions_hierarchy = [ region_group_0 ] (* <'a> *) in let inputs = [ mk_ref_ty rvar_0 (input_ty type_param_0.index) is_mut (* &'a (mut) input_ty *); ] in let inputs = List.append inputs (match index_ty with None -> [] | Some ty -> [ ty ]) in let output = mk_ref_ty rvar_0 (output_ty type_param_0.index) is_mut (* &'a (mut) output_ty *) in mk_sig generics regions_hierarchy inputs output let mk_array_slice_index_sig (is_array : bool) (is_mut : bool) : A.fun_sig = (* Array *) let input_ty id = if is_array then mk_array_ty (T.TypeVar id) cgvar_0 else mk_slice_ty (T.TypeVar id) in (* usize *) let index_ty = usize_ty in (* T *) let output_ty id = T.TypeVar id in let cgs = if is_array then [ cg_param_0 ] else [] in mk_array_slice_borrow_sig cgs input_ty (Some index_ty) output_ty is_mut let array_index_sig (is_mut : bool) = mk_array_slice_index_sig true is_mut let slice_index_sig (is_mut : bool) = mk_array_slice_index_sig false is_mut let array_to_slice_sig (is_mut : bool) : A.fun_sig = (* Array *) let input_ty id = mk_array_ty (T.TypeVar id) cgvar_0 in (* Slice *) let output_ty id = mk_slice_ty (T.TypeVar id) in let cgs = [ cg_param_0 ] in mk_array_slice_borrow_sig cgs input_ty None output_ty is_mut let array_repeat_sig = let generics = (* *) mk_generic_params [] [ type_param_0 ] [ cg_param_0 ] in let regions_hierarchy = [] (* <> *) in let inputs = [ tvar_0 (* T *) ] in let output = (* [T; N] *) mk_array_ty tvar_0 cgvar_0 in mk_sig generics regions_hierarchy inputs output (** Helper: [fn(&'a [T]) -> usize] *) let slice_len_sig : A.fun_sig = let generics = mk_generic_params [ region_param_0 ] [ type_param_0 ] [] (* <'a, T> *) in let regions_hierarchy = [ region_group_0 ] (* <'a> *) in let inputs = [ mk_ref_ty rvar_0 (mk_slice_ty tvar_0) false (* &'a [T] *) ] in let output = mk_usize_ty (* usize *) in mk_sig generics regions_hierarchy inputs output end type raw_assumed_fun_info = A.assumed_fun_id * A.fun_sig * bool * name * bool list option type assumed_fun_info = { fun_id : A.assumed_fun_id; fun_sig : A.fun_sig; can_fail : bool; name : name; keep_types : bool list option; (** We may want to filter some type arguments. For instance, all the `Vec` functions (and the `Vec` type itself) take an `Allocator` type as argument, that we ignore. *) } let mk_assumed_fun_info (raw : raw_assumed_fun_info) : assumed_fun_info = let fun_id, fun_sig, can_fail, name, keep_types = raw in { fun_id; fun_sig; can_fail; name; keep_types } (** The list of assumed functions and all their information: - their signature - a boolean indicating whether the function can fail or not (if true: can fail) - their name Rk.: following what is written above, we don't include [Box::free]. Remark about the vector functions: for [Vec::len] to be correct and return a [usize], we have to make sure that vectors are bounded by the max usize. As a consequence, [Vec::push] is monadic. *) let raw_assumed_fun_infos : raw_assumed_fun_info list = [ ( BoxNew, Sig.box_new_sig, false, to_name [ "alloc"; "boxed"; "Box"; "new" ], Some [ true; false ] ); (* BoxFree shouldn't be used *) ( BoxFree, Sig.box_free_sig, false, to_name [ "alloc"; "boxed"; "Box"; "free" ], Some [ true; false ] ); (* Array Index *) ( ArrayIndexShared, Sig.array_index_sig false, true, to_name [ "@ArrayIndexShared" ], None ); ( ArrayIndexMut, Sig.array_index_sig true, true, to_name [ "@ArrayIndexMut" ], None ); (* Array to slice*) ( ArrayToSliceShared, Sig.array_to_slice_sig false, true, to_name [ "@ArrayToSliceShared" ], None ); ( ArrayToSliceMut, Sig.array_to_slice_sig true, true, to_name [ "@ArrayToSliceMut" ], None ); (* Array Repeat *) (ArrayRepeat, Sig.array_repeat_sig, false, to_name [ "@ArrayRepeat" ], None); (* Slice Index *) ( SliceIndexShared, Sig.slice_index_sig false, true, to_name [ "@SliceIndexShared" ], None ); ( SliceIndexMut, Sig.slice_index_sig true, true, to_name [ "@SliceIndexMut" ], None ); (SliceLen, Sig.slice_len_sig, false, to_name [ "@SliceLen" ], None); ] let assumed_fun_infos : assumed_fun_info list = List.map mk_assumed_fun_info raw_assumed_fun_infos let get_assumed_fun_info (id : A.assumed_fun_id) : assumed_fun_info = match List.find_opt (fun x -> id = x.fun_id) assumed_fun_infos with | Some info -> info | None -> raise (Failure ("get_assumed_fun_info: not found: " ^ A.show_assumed_fun_id id)) let get_assumed_fun_sig (id : A.assumed_fun_id) : A.fun_sig = (get_assumed_fun_info id).fun_sig let get_assumed_fun_name (id : A.assumed_fun_id) : fun_name = (get_assumed_fun_info id).name let assumed_fun_can_fail (id : A.assumed_fun_id) : bool = (get_assumed_fun_info id).can_fail