import Lean import Base.Arith import Base.Progress.Base namespace Progress open Lean Elab Term Meta Tactic open Utils -- TODO: remove namespace Test open Primitives set_option trace.Progress true @[pspec] theorem vec_index_test (α : Type u) (v: Vec α) (i: Usize) (h: i.val < v.val.length) : ∃ x, v.index α i = .ret x := by sorry #eval pspecAttr.find? ``Primitives.Vec.index end Test inductive TheoremOrLocal where | Theorem (thName : Name) | Local (asm : LocalDecl) /- Type to propagate the errors of `progressWith`. We need this because we use the exceptions to backtrack, when trying to use the assumptions for instance. When there is actually an error we want to propagate to the user, we return it. -/ inductive ProgressError | Ok | Error (msg : MessageData) deriving Inhabited def progressWith (fnExpr : Expr) (th : TheoremOrLocal) (ids : Array Name) (asmTac : TacticM Unit) : TacticM ProgressError := do /- Apply the theorem We try to match the theorem with the goal In order to do so, we introduce meta-variables for all the parameters (i.e., quantified variables and assumpions), and unify those with the goal. Remark: we do not introduce meta-variables for the quantified variables which don't appear in the function arguments (we want to let them quantified). We also make sure that all the meta variables which appear in the function arguments have been instantiated -/ let env ← getEnv let thTy ← do match th with | .Theorem thName => let thDecl := env.constants.find! thName pure thDecl.type | .Local asmDecl => pure asmDecl.type -- TODO: the tactic fails if we uncomment withNewMCtxDepth -- withNewMCtxDepth do let (mvars, binders, thExBody) ← forallMetaTelescope thTy -- Introduce the existentially quantified variables and the post-condition -- in the context let thBody ← existsTelescope thExBody fun _evars thBody => do let (thBody, _) ← destEq thBody -- There shouldn't be any existential variables in thBody pure thBody -- Match the body with the target trace[Progress] "Maching `{thBody}` with `{fnExpr}`" let ok ← isDefEq thBody fnExpr if ¬ ok then throwError "Could not unify the theorem with the target:\n- theorem: {thBody}\n- target: {fnExpr}" let mgoal ← Tactic.getMainGoal postprocessAppMVars `progress mgoal mvars binders true true Term.synthesizeSyntheticMVarsNoPostponing let thBody ← instantiateMVars thBody trace[Progress] "thBody (after instantiation): {thBody}" -- Add the instantiated theorem to the assumptions (we apply it on the metavariables). let th ← do match th with | .Theorem thName => mkAppOptM thName (mvars.map some) | .Local decl => mkAppOptM' (mkFVar decl.fvarId) (mvars.map some) let asmName ← mkFreshUserName `h let thTy ← inferType th let thAsm ← Utils.addDeclTac asmName th thTy (asLet := false) withMainContext do -- The context changed - TODO: remove once addDeclTac is updated let ngoal ← getMainGoal trace[Progress] "current goal: {ngoal}" trace[Progress] "current goal: {← ngoal.isAssigned}" -- The assumption should be of the shape: -- `∃ x1 ... xn, f args = ... ∧ ...` -- We introduce the existentially quantified variables and split the top-most -- conjunction if there is one. We use the provided `ids` list to name the -- introduced variables. let res ← splitAllExistsTac thAsm ids.toList fun h ids => do -- Split the conjunctions. -- For the conjunctions, we split according once to separate the equality `f ... = .ret ...` -- from the postcondition, if there is, then continue to split the postcondition if there -- are remaining ids. let splitEqAndPost (k : Expr → Option Expr → List Name → TacticM ProgressError) : TacticM ProgressError := do if ← isConj (← inferType h) then do let hName := (← h.fvarId!.getDecl).userName let (optId, ids) := listTryPopHead ids let optIds := match optId with | none => none | some id => some (hName, id) splitConjTac h optIds (fun hEq hPost => k hEq (some hPost) ids) else k h none ids -- Simplify the target by using the equality and some monad simplifications, -- then continue splitting the post-condition splitEqAndPost fun hEq hPost ids => do trace[Progress] "eq and post:\n{hEq} : {← inferType hEq}\n{hPost}" simpAt [] [``Primitives.bind_tc_ret, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div] [hEq.fvarId!] (.targets #[] true) -- Clear the equality let mgoal ← getMainGoal let mgoal ← mgoal.tryClearMany #[hEq.fvarId!] setGoals (mgoal :: (← getUnsolvedGoals)) trace[Progress] "Goal after splitting eq and post and simplifying the target: {mgoal}" -- Continue splitting following the ids provided by the user if ¬ ids.isEmpty then let hPost ← match hPost with | none => do return (.Error m!"Too many ids provided ({ids}): there is no postcondition to split") | some hPost => pure hPost let curPostId := (← hPost.fvarId!.getDecl).userName let rec splitPost (hPost : Expr) (ids : List Name) : TacticM ProgressError := do match ids with | [] => pure .Ok -- Stop | nid :: ids => do -- Split if ← isConj hPost then splitConjTac hPost (some (nid, curPostId)) (λ _ nhPost => splitPost nhPost ids) else return (.Error m!"Too many ids provided ({nid :: ids}) not enough conjuncts to split in the postcondition") splitPost hPost ids else return .Ok match res with | .Error _ => return res -- Can we get there? We're using "return" | .Ok => -- Update the set of goals let curGoals ← getUnsolvedGoals let newGoals := mvars.map Expr.mvarId! let newGoals ← newGoals.filterM fun mvar => not <$> mvar.isAssigned trace[Progress] "new goals: {newGoals}" setGoals newGoals.toList allGoals asmTac let newGoals ← getUnsolvedGoals setGoals (newGoals ++ curGoals) -- pure .Ok -- The array of ids are identifiers to use when introducing fresh variables def progressAsmsOrLookupTheorem (ids : Array Name) (asmTac : TacticM Unit) : TacticM Unit := do withMainContext do -- Retrieve the goal let mgoal ← Tactic.getMainGoal let goalTy ← mgoal.getType -- Dive into the goal to lookup the theorem let (fName, fLevels, args) ← do withPSpec goalTy fun desc => -- TODO: check that no universally quantified variables in the arguments pure (desc.fName, desc.fLevels, desc.args) -- TODO: this should be in the pspec desc let fnExpr := mkAppN (.const fName fLevels) args trace[Progress] "Function: {fName}" -- Try all the assumptions one by one and if it fails try to lookup a theorem let ctx ← Lean.MonadLCtx.getLCtx let decls ← ctx.getDecls for decl in decls.reverse do trace[Progress] "Trying assumption: {decl.userName} : {decl.type}" try match ← progressWith fnExpr (.Local decl) ids asmTac with | .Ok => return () | .Error msg => throwError msg catch _ => continue -- It failed: try to lookup a theorem -- TODO: use a list of theorems, and try them one by one? trace[Progress] "No assumption succeeded: trying to lookup a theorem" let thName ← do match ← pspecAttr.find? fName with | none => throwError "Could not find a pspec theorem for {fName}" | some thName => pure thName trace[Progress] "Lookuped up: {thName}" -- Apply the theorem match ← progressWith fnExpr (.Theorem thName) ids asmTac with | .Ok => return () | .Error msg => throwError msg syntax progressArgs := ("as" " ⟨ " (ident)+ " ⟩")? def evalProgress (args : TSyntax `Progress.progressArgs) : TacticM Unit := do let args := args.raw -- Process the arguments to retrieve the identifiers to use trace[Progress] "Progressing arguments: {args}" let args := args.getArgs let ids := if args.size > 0 then let args := (args.get! 0).getArgs let args := (args.get! 2).getArgs args.map Syntax.getId else #[] trace[Progress] "Ids: {ids}" progressAsmsOrLookupTheorem ids (firstTac [assumptionTac, Arith.scalarTac]) elab "progress" args:progressArgs : tactic => evalProgress args -- TODO: remove namespace Test open Primitives set_option trace.Progress true @[pspec] theorem vec_index_test2 (α : Type u) (v: Vec α) (i: Usize) (h: i.val < v.val.length) : ∃ (x: α), v.index α i = .ret x := by progress as ⟨ x ⟩ simp set_option trace.Progress false end Test end Progress