import Lean import Std.Lean.HashSet import Base.Utils import Base.Primitives.Base namespace Progress open Lean Elab Term Meta open Utils -- We can't define and use trace classes in the same file initialize registerTraceClass `Progress /- # Progress tactic -/ structure PSpecDesc where -- The universally quantified variables fvars : Array Expr -- The existentially quantified variables evars : Array Expr -- The function fName : Name -- The function arguments fLevels : List Level args : Array Expr -- The universally quantified variables which appear in the function arguments argsFVars : Array FVarId -- The returned value ret : Expr -- The postcondition (if there is) post : Option Expr section Methods variable [MonadLiftT MetaM m] [MonadControlT MetaM m] [Monad m] [MonadOptions m] variable [MonadTrace m] [MonadLiftT IO m] [MonadRef m] [AddMessageContext m] variable [MonadError m] variable {a : Type} /- Analyze a pspec theorem to decompose its arguments. PSpec theorems should be of the following shape: ``` ∀ x1 ... xn, H1 → ... Hn → ∃ y1 ... ym. f x1 ... xn = .ret ... ∧ Post1 ∧ ... ∧ Postk ``` The continuation `k` receives the following inputs: - universally quantified variables - assumptions - existentially quantified variables - function name - function arguments - return - postconditions TODO: generalize for when we do inductive proofs -/ partial def withPSpec [Inhabited (m a)] [Nonempty (m a)] (th : Expr) (k : PSpecDesc → m a) (sanityChecks : Bool := false) : m a := do trace[Progress] "Proposition: {th}" -- Dive into the quantified variables and the assumptions forallTelescope th fun fvars th => do trace[Progress] "Universally quantified arguments and assumptions: {fvars}" /- -- Filter the argumens which are not propositions let rec getFirstPropIdx (i : Nat) : MetaM Nat := do if i ≥ fargs.size then pure i else do let x := fargs.get! i if ← Meta.isProp (← inferType x) then pure i else getFirstPropIdx (i + 1) let i ← getFirstPropIdx 0 let fvars := fargs.extract 0 i let hyps := fargs.extract i fargs.size trace[Progress] "Quantified variables: {fvars}" trace[Progress] "Assumptions: {hyps}" -- Sanity check: all hypotheses are propositions (in particular, all the -- quantified variables are at the beginning) let hypsAreProp ← hyps.allM fun x => do Meta.isProp (← inferType x) if ¬ hypsAreProp then throwError "The theorem doesn't have the proper shape: all the quantified arguments should be at the beginning" -/ -- Dive into the existentials existsTelescope th fun evars th => do trace[Progress] "Existentials: {evars}" trace[Progress] "Proposition after stripping the quantifiers: {th}" -- Take the first conjunct let (th, post) ← optSplitConj th trace[Progress] "After splitting the conjunction:\n- eq: {th}\n- post: {post}" -- Destruct the equality let (th, ret) ← destEq th trace[Progress] "After splitting the equality:\n- lhs: {th}\n- rhs: {ret}" -- Destruct the application to get the name th.consumeMData.withApp fun f args => do trace[Progress] "After stripping the arguments:\n- f: {f}\n- args: {args}" if ¬ f.isConst then throwError "Not a constant: {f}" -- Compute the set of universally quantified variables which appear in the function arguments let allArgsFVars ← args.foldlM (fun hs arg => getFVarIds arg hs) HashSet.empty -- Sanity check if sanityChecks then let fvarsSet : HashSet FVarId := HashSet.ofArray (fvars.map (fun x => x.fvarId!)) let filtArgsFVars := allArgsFVars.toArray.filter (fun fvar => ¬ fvarsSet.contains fvar) if ¬ filtArgsFVars.isEmpty then let filtArgsFVars := filtArgsFVars.map (fun fvarId => Expr.fvar fvarId) throwError "Some of the function inputs are not universally quantified: {filtArgsFVars}" let argsFVars := fvars.map (fun x => x.fvarId!) let argsFVars := argsFVars.filter (fun fvar => allArgsFVars.contains fvar) -- Return trace[Progress] "Function: {f.constName!}"; let thDesc := { fvars := fvars evars := evars fName := f.constName! fLevels := f.constLevels! args := args argsFVars ret := ret post := post } k thDesc end Methods def getPSpecFunName (th : Expr) : MetaM Name := withPSpec th (fun d => do pure d.fName) true def getPSpecClassFunNames (th : Expr) : MetaM (Name × Name) := withPSpec th (fun d => do let arg0 := d.args.get! 0 arg0.withApp fun f _ => do if ¬ f.isConst then throwError "Not a constant: {f}" pure (d.fName, f.constName) ) true -- "Regular" pspec attribute structure PSpecAttr where attr : AttributeImpl ext : MapDeclarationExtension Name deriving Inhabited /- pspec attribute for type classes: we use the name of the type class to lookup another map. We use the *first* argument of the type class to lookup into this second map. Example: ======== We use type classes for addition. For instance, the addition between two U32 is written (without syntactic sugar) as `HAdd.add (Scalar ) x y`. As a consequence, we store the theorem through the bindings: HAdd.add → Scalar → ... -/ structure PSpecClassAttr where attr : AttributeImpl ext : MapDeclarationExtension (NameMap Name) deriving Inhabited /- The persistent map from function to pspec theorems. -/ initialize pspecAttr : PSpecAttr ← do let ext ← mkMapDeclarationExtension `pspecMap let attrImpl : AttributeImpl := { name := `pspec descr := "Marks theorems to use with the `progress` tactic" add := fun thName stx attrKind => do Attribute.Builtin.ensureNoArgs stx -- TODO: use the attribute kind unless attrKind == AttributeKind.global do throwError "invalid attribute 'pspec', must be global" -- Lookup the theorem let env ← getEnv let thDecl := env.constants.find! thName let fName ← MetaM.run' (getPSpecFunName thDecl.type) trace[Progress] "Registering spec theorem for {fName}" let env := ext.addEntry env (fName, thName) setEnv env pure () } registerBuiltinAttribute attrImpl pure { attr := attrImpl, ext := ext } /- The persistent map from type classes to pspec theorems -/ initialize pspecClassAttr : PSpecClassAttr ← do let ext : MapDeclarationExtension (NameMap Name) ← mkMapDeclarationExtension `pspecClassMap let attrImpl : AttributeImpl := { name := `cpspec descr := "Marks theorems to use for type classes with the `progress` tactic" add := fun thName stx attrKind => do Attribute.Builtin.ensureNoArgs stx -- TODO: use the attribute kind unless attrKind == AttributeKind.global do throwError "invalid attribute 'cpspec', must be global" -- Lookup the theorem let env ← getEnv let thDecl := env.constants.find! thName let (fName, argName) ← MetaM.run' (getPSpecClassFunNames thDecl.type) trace[Progress] "Registering class spec theorem for ({fName}, {argName})" -- Update the entry if there is one, add an entry if there is none let env := match (ext.getState (← getEnv)).find? fName with | none => let m := RBMap.ofList [(argName, thName)] ext.addEntry env (fName, m) | some m => let m := m.insert argName thName ext.addEntry env (fName, m) setEnv env pure () } registerBuiltinAttribute attrImpl pure { attr := attrImpl, ext := ext } def PSpecAttr.find? (s : PSpecAttr) (name : Name) : MetaM (Option Name) := do return (s.ext.getState (← getEnv)).find? name def PSpecAttr.getState (s : PSpecAttr) : MetaM (NameMap Name) := do pure (s.ext.getState (← getEnv)) def PSpecClassAttr.find? (s : PSpecClassAttr) (className argName : Name) : MetaM (Option Name) := do match (s.ext.getState (← getEnv)).find? className with | none => return none | some map => return map.find? argName def PSpecClassAttr.getState (s : PSpecClassAttr) : MetaM (NameMap (NameMap Name)) := do pure (s.ext.getState (← getEnv)) def showStoredPSpec : MetaM Unit := do let st ← pspecAttr.getState let s := st.toList.foldl (fun s (f, th) => f!"{s}\n{f} → {th}") f!"" IO.println s def showStoredPSpecClass : MetaM Unit := do let st ← pspecClassAttr.getState let s := st.toList.foldl (fun s (f, m) => let ms := m.toList.foldl (fun s (f, th) => f!"{s}\n {f} → {th}") f!"" f!"{s}\n{f} → [{ms}]") f!"" IO.println s end Progress