/- Arrays/slices -/ import Lean import Lean.Meta.Tactic.Simp import Init.Data.List.Basic import Mathlib.Tactic.RunCmd import Mathlib.Tactic.Linarith import Base.IList import Base.Primitives.Scalar import Base.Primitives.Range import Base.Arith import Base.Progress.Base namespace Primitives open Result Error def Array (α : Type u) (n : Usize) := { l : List α // l.length = n.val } instance (a : Type u) (n : Usize) : Arith.HasIntProp (Array a n) where prop_ty := λ v => v.val.len = n.val prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *] instance {α : Type u} {n : Usize} (p : Array α n → Prop) : Arith.HasIntProp (Subtype p) where prop_ty := λ x => p x prop := λ x => x.property @[simp] abbrev Array.length {α : Type u} {n : Usize} (v : Array α n) : Int := v.val.len @[simp] abbrev Array.v {α : Type u} {n : Usize} (v : Array α n) : List α := v.val example {α: Type u} {n : Usize} (v : Array α n) : v.length ≤ Scalar.max ScalarTy.Usize := by scalar_tac def Array.make (α : Type u) (n : Usize) (init : List α) (hl : init.len = n.val := by decide) : Array α n := ⟨ init, by simp [← List.len_eq_length]; apply hl ⟩ example : Array Int (Usize.ofInt 2) := Array.make Int (Usize.ofInt 2) [0, 1] @[simp] abbrev Array.index {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i : Int) : α := v.val.index i @[simp] abbrev Array.slice {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i j : Int) : List α := v.val.slice i j def Array.index_shared (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some x => ret x /- In the theorems below: we don't always need the `∃ ..`, but we use one so that `progress` introduces an opaque variable and an equality. This helps control the context. -/ @[pspec] theorem Array.index_shared_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize) (hbound : i.val < v.length) : ∃ x, v.index_shared α n i = ret x ∧ x = v.val.index i.val := by simp only [index_shared] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) simp [*] -- This shouldn't be used def Array.index_shared_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (_: α) : Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds def Array.index_mut (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some x => ret x @[pspec] theorem Array.index_mut_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize) (hbound : i.val < v.length) : ∃ x, v.index_mut α n i = ret x ∧ x = v.val.index i.val := by simp only [index_mut] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) simp [*] def Array.index_mut_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (x: α) : Result (Array α n) := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some _ => .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩ @[pspec] theorem Array.index_mut_back_spec {α : Type u} {n : Usize} (v: Array α n) (i: Usize) (x : α) (hbound : i.val < v.length) : ∃ nv, v.index_mut_back α n i x = ret nv ∧ nv.val = v.val.update i.val x := by simp only [index_mut_back] have h := List.indexOpt_bounds v.val i.val split . simp_all [length]; cases h <;> scalar_tac . simp_all def Slice (α : Type u) := { l : List α // l.length ≤ Usize.max } instance (a : Type u) : Arith.HasIntProp (Slice a) where prop_ty := λ v => 0 ≤ v.val.len ∧ v.val.len ≤ Scalar.max ScalarTy.Usize prop := λ ⟨ _, l ⟩ => by simp[Scalar.max, List.len_eq_length, *] instance {α : Type u} (p : Slice α → Prop) : Arith.HasIntProp (Subtype p) where prop_ty := λ x => p x prop := λ x => x.property @[simp] abbrev Slice.length {α : Type u} (v : Slice α) : Int := v.val.len @[simp] abbrev Slice.v {α : Type u} (v : Slice α) : List α := v.val example {a: Type u} (v : Slice a) : v.length ≤ Scalar.max ScalarTy.Usize := by scalar_tac def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩ -- TODO: very annoying that the α is an explicit parameter def Slice.len (α : Type u) (v : Slice α) : Usize := Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac) @[simp] theorem Slice.len_val {α : Type u} (v : Slice α) : (Slice.len α v).val = v.length := by rfl @[simp] abbrev Slice.index {α : Type u} [Inhabited α] (v: Slice α) (i: Int) : α := v.val.index i @[simp] abbrev Slice.slice {α : Type u} [Inhabited α] (s : Slice α) (i j : Int) : List α := s.val.slice i j def Slice.index_shared (α : Type u) (v: Slice α) (i: Usize) : Result α := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some x => ret x /- In the theorems below: we don't always need the `∃ ..`, but we use one so that `progress` introduces an opaque variable and an equality. This helps control the context. -/ @[pspec] theorem Slice.index_shared_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize) (hbound : i.val < v.length) : ∃ x, v.index_shared α i = ret x ∧ x = v.val.index i.val := by simp only [index_shared] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) simp [*] -- This shouldn't be used def Slice.index_shared_back (α : Type u) (v: Slice α) (i: Usize) (_: α) : Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds def Slice.index_mut (α : Type u) (v: Slice α) (i: Usize) : Result α := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some x => ret x @[pspec] theorem Slice.index_mut_spec {α : Type u} [Inhabited α] (v: Slice α) (i: Usize) (hbound : i.val < v.length) : ∃ x, v.index_mut α i = ret x ∧ x = v.val.index i.val := by simp only [index_mut] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) simp [*] def Slice.index_mut_back (α : Type u) (v: Slice α) (i: Usize) (x: α) : Result (Slice α) := match v.val.indexOpt i.val with | none => fail .arrayOutOfBounds | some _ => .ret ⟨ v.val.update i.val x, by have := v.property; simp [*] ⟩ @[pspec] theorem Slice.index_mut_back_spec {α : Type u} (v: Slice α) (i: Usize) (x : α) (hbound : i.val < v.length) : ∃ nv, v.index_mut_back α i x = ret nv ∧ nv.val = v.val.update i.val x := by simp only [index_mut_back] have h := List.indexOpt_bounds v.val i.val split . simp_all [length]; cases h <;> scalar_tac . simp_all /- Array to slice/subslices -/ /- We could make this function not use the `Result` type. By making it monadic, we push the user to use the `Array.to_slice_shared_spec` spec theorem below (through the `progress` tactic), meaning `Array.to_slice_shared` should be considered as opaque. All what the spec theorem reveals is that the "representative" lists are the same. -/ def Array.to_slice_shared (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) := ret ⟨ v.val, by simp [← List.len_eq_length]; scalar_tac ⟩ @[pspec] theorem Array.to_slice_shared_spec {α : Type u} {n : Usize} (v : Array α n) : ∃ s, to_slice_shared α n v = ret s ∧ v.val = s.val := by simp [to_slice_shared] def Array.to_slice_mut (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) := to_slice_shared α n v @[pspec] theorem Array.to_slice_mut_spec {α : Type u} {n : Usize} (v : Array α n) : ∃ s, Array.to_slice_shared α n v = ret s ∧ v.val = s.val := to_slice_shared_spec v def Array.to_slice_mut_back (α : Type u) (n : Usize) (_ : Array α n) (s : Slice α) : Result (Array α n) := if h: s.val.len = n.val then ret ⟨ s.val, by simp [← List.len_eq_length, *] ⟩ else fail panic @[pspec] theorem Array.to_slice_mut_back_spec {α : Type u} {n : Usize} (a : Array α n) (ns : Slice α) (h : ns.val.len = n.val) : ∃ na, to_slice_mut_back α n a ns = ret na ∧ na.val = ns.val := by simp [to_slice_mut_back, *] def Array.subslice_shared (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := -- TODO: not completely sure here if r.start.val < r.end_.val ∧ r.end_.val ≤ a.val.len then ret ⟨ a.val.slice r.start.val r.end_.val, by simp [← List.len_eq_length] have := a.val.slice_len_le r.start.val r.end_.val scalar_tac ⟩ else fail panic @[pspec] theorem Array.subslice_shared_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) : ∃ s, subslice_shared α n a r = ret s ∧ s.val = a.val.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i)) := by simp [subslice_shared, *] intro i _ _ have := List.index_slice r.start.val r.end_.val i a.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac) simp [*] def Array.subslice_mut (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) := Array.subslice_shared α n a r @[pspec] theorem Array.subslice_mut_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) : ∃ s, subslice_mut α n a r = ret s ∧ s.val = a.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i)) := subslice_shared_spec a r h0 h1 def Array.subslice_mut_back (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) (s : Slice α) : Result (Array α n) := -- TODO: not completely sure here if h: r.start.val < r.end_.val ∧ r.end_.val ≤ a.length ∧ s.val.len = r.end_.val - r.start.val then let s_beg := a.val.itake r.start.val let s_end := a.val.idrop r.end_.val have : s_beg.len = r.start.val := by apply List.itake_len . simp_all; scalar_tac . scalar_tac have : s_end.len = a.val.len - r.end_.val := by apply List.idrop_len . scalar_tac . scalar_tac let na := s_beg.append (s.val.append s_end) have : na.len = a.val.len := by simp [*] ret ⟨ na, by simp_all [← List.len_eq_length]; scalar_tac ⟩ else fail panic -- TODO: it is annoying to write `.val` everywhere. We could leverage coercions, -- but: some symbols like `+` are already overloaded to be notations for monadic -- operations/ -- We should introduce special symbols for the monadic arithmetic operations -- (the use will never write those symbols directly). @[pspec] theorem Array.subslice_mut_back_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α) (_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : s.length = r.end_.val - r.start.val) : ∃ na, subslice_mut_back α n a r s = ret na ∧ (∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧ (∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = s.index (i - r.start.val)) ∧ (∀ i, r.end_.val ≤ i → i < n.val → na.index i = a.index i) := by simp [subslice_mut_back, *] have h := List.replace_slice_index r.start.val r.end_.val a.val s.val (by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac) simp [List.replace_slice] at h have ⟨ h0, h1, h2 ⟩ := h clear h split_conjs . intro i _ _ have := h0 i (by int_tac) (by int_tac) simp [*] . intro i _ _ have := h1 i (by int_tac) (by int_tac) simp [*] . intro i _ _ have := h2 i (by int_tac) (by int_tac) simp [*] def Slice.subslice_shared (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := -- TODO: not completely sure here if r.start.val < r.end_.val ∧ r.end_.val ≤ s.length then ret ⟨ s.val.slice r.start.val r.end_.val, by simp [← List.len_eq_length] have := s.val.slice_len_le r.start.val r.end_.val scalar_tac ⟩ else fail panic @[pspec] theorem Slice.subslice_shared_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) : ∃ ns, subslice_shared α s r = ret ns ∧ ns.val = s.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i)) := by simp [subslice_shared, *] intro i _ _ have := List.index_slice r.start.val r.end_.val i s.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac) simp [*] def Slice.subslice_mut (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) := Slice.subslice_shared α s r @[pspec] theorem Slice.subslice_mut_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize) (h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) : ∃ ns, subslice_mut α s r = ret ns ∧ ns.val = s.slice r.start.val r.end_.val ∧ (∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i)) := subslice_shared_spec s r h0 h1 attribute [pp_dot] List.len List.length List.index -- use the dot notation when printing set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse) def Slice.subslice_mut_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) := -- TODO: not completely sure here if h: r.start.val < r.end_.val ∧ r.end_.val ≤ s.length ∧ ss.val.len = r.end_.val - r.start.val then let s_beg := s.val.itake r.start.val let s_end := s.val.idrop r.end_.val have : s_beg.len = r.start.val := by apply List.itake_len . simp_all; scalar_tac . scalar_tac have : s_end.len = s.val.len - r.end_.val := by apply List.idrop_len . scalar_tac . scalar_tac let ns := s_beg.append (ss.val.append s_end) have : ns.len = s.val.len := by simp [*] ret ⟨ ns, by simp_all [← List.len_eq_length]; scalar_tac ⟩ else fail panic @[pspec] theorem Slice.subslice_mut_back_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α) (_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : ss.length = r.end_.val - r.start.val) : ∃ na, subslice_mut_back α a r ss = ret na ∧ (∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧ (∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = ss.index (i - r.start.val)) ∧ (∀ i, r.end_.val ≤ i → i < a.length → na.index i = a.index i) := by simp [subslice_mut_back, *] have h := List.replace_slice_index r.start.val r.end_.val a.val ss.val (by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac) simp [List.replace_slice, *] at h have ⟨ h0, h1, h2 ⟩ := h clear h split_conjs . intro i _ _ have := h0 i (by int_tac) (by int_tac) simp [*] . intro i _ _ have := h1 i (by int_tac) (by int_tac) simp [*] . intro i _ _ have := h2 i (by int_tac) (by int_tac) simp [*] end Primitives