/- Complementary list functions and lemmas which operate on integers rather than natural numbers. -/ import Std.Data.Int.Lemmas import Base.Arith namespace List def len (ls : List α) : Int := match ls with | [] => 0 | _ :: tl => 1 + len tl -- Remark: if i < 0, then the result is none def indexOpt (ls : List α) (i : Int) : Option α := match ls with | [] => none | hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1) -- Remark: if i < 0, then the result is the defaul element def index [Inhabited α] (ls : List α) (i : Int) : α := match ls with | [] => Inhabited.default | x :: tl => if i = 0 then x else index tl (i - 1) -- Remark: the list is unchanged if the index is not in bounds (in particular -- if it is < 0) def update (ls : List α) (i : Int) (y : α) : List α := match ls with | [] => [] | x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y -- Remark: the whole list is dropped if the index is not in bounds (in particular -- if it is < 0) def idrop (i : Int) (ls : List α) : List α := match ls with | [] => [] | x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl section Lemmas variable {α : Type u} @[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len] @[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len] @[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index] @[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index] @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] @[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update] @[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop] @[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop] @[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop] theorem len_eq_length (ls : List α) : ls.len = ls.length := by induction ls . rfl . simp [*, Int.ofNat_succ, Int.add_comm] @[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by -- Remark: simp loops here because of the following rewritings: -- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2) -- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2) -- TODO: post an issue? simp only [len_eq_length] simp only [length_append] simp only [Int.ofNat_add] @[simp] theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by revert i induction ls <;> simp_all [length, update] intro; split <;> simp [*] @[simp] theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by simp [len_eq_length] theorem len_pos : 0 ≤ (ls : List α).len := by induction ls <;> simp [*] linarith instance (a : Type u) : Arith.HasIntProp (List a) where prop_ty := λ ls => 0 ≤ ls.len prop := λ ls => ls.len_pos theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by revert l1' induction l1 . intro l1'; cases l1' <;> simp [*] . intro l1'; cases l1' <;> simp_all; tauto theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by have := left_length_eq_append_eq l1 l2 l1' l2' constructor <;> intro heq2 <;> have : l1.length + l2.length = l1'.length + l2'.length := by have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*] simp only [length_append] at this apply this . simp [heq] at this tauto . tauto theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by simp [len_eq_length] at heq apply left_length_eq_append_eq assumption theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by simp [len_eq_length] at heq apply right_length_eq_append_eq assumption open Arith in theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by revert i induction ls <;> simp [*] rename_i hd tl hi intro i hineq if heq: i = 0 then simp [*] at * have := tl.len_pos linarith else simp at hineq have : 0 < i := by int_tac simp [*] apply hi linarith end Lemmas end List