/- Complementary list functions and lemmas which operate on integers rather than natural numbers. -/ import Std.Data.Int.Lemmas import Base.Arith import Base.Utils namespace List def len (ls : List α) : Int := match ls with | [] => 0 | _ :: tl => 1 + len tl @[simp] theorem len_nil : len ([] : List α) = 0 := by simp [len] @[simp] theorem len_cons : len ((x :: tl) : List α) = 1 + len tl := by simp [len] theorem len_pos : 0 ≤ (ls : List α).len := by induction ls <;> simp [*] linarith instance (a : Type u) : Arith.HasIntProp (List a) where prop_ty := λ ls => 0 ≤ ls.len prop := λ ls => ls.len_pos -- Remark: if i < 0, then the result is none def indexOpt (ls : List α) (i : Int) : Option α := match ls with | [] => none | hd :: tl => if i = 0 then some hd else indexOpt tl (i - 1) @[simp] theorem indexOpt_nil : indexOpt ([] : List α) i = none := by simp [indexOpt] @[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt] @[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt] -- Remark: if i < 0, then the result is the defaul element def index [Inhabited α] (ls : List α) (i : Int) : α := match ls with | [] => Inhabited.default | x :: tl => if i = 0 then x else index tl (i - 1) @[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index] @[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index] theorem indexOpt_bounds (ls : List α) (i : Int) : ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i := match ls with | [] => have : ¬ (i < 0) → 0 ≤ i := by int_tac by simp; tauto | _ :: tl => have := indexOpt_bounds tl (i - 1) if h: i = 0 then by simp [*]; int_tac else by simp [*] constructor <;> intros <;> casesm* _ ∨ _ <;> -- splits all the disjunctions first | left; int_tac | right; int_tac theorem indexOpt_eq_index [Inhabited α] (ls : List α) (i : Int) : 0 ≤ i → i < ls.len → ls.indexOpt i = some (ls.index i) := match ls with | [] => by simp; intros; linarith | hd :: tl => if h: i = 0 then by simp [*] else have hi := indexOpt_eq_index tl (i - 1) by simp [*]; intros; apply hi <;> int_tac -- Remark: the list is unchanged if the index is not in bounds (in particular -- if it is < 0) def update (ls : List α) (i : Int) (y : α) : List α := match ls with | [] => [] | x :: tl => if i = 0 then y :: tl else x :: update tl (i - 1) y -- Remark: the whole list is dropped if the index is not in bounds (in particular -- if it is < 0) def idrop (i : Int) (ls : List α) : List α := match ls with | [] => [] | x :: tl => if i = 0 then x :: tl else idrop (i - 1) tl def itake (i : Int) (ls : List α) : List α := match ls with | [] => [] | hd :: tl => if i = 0 then [] else hd :: itake (i - 1) tl def slice (start end_ : Int) (ls : List α) : List α := (ls.idrop start).itake (end_ - start) def replace_slice (start end_ : Int) (l nl : List α) : List α := let l_beg := l.itake start let l_end := l.idrop end_ l_beg ++ nl ++ l_end def allP {α : Type u} (l : List α) (p: α → Prop) : Prop := foldr (fun a r => p a ∧ r) True l def pairwise_rel {α : Type u} (rel : α → α → Prop) (l: List α) : Prop := match l with | [] => True | hd :: tl => allP tl (rel hd) ∧ pairwise_rel rel tl section Lemmas variable {α : Type u} def ireplicate {α : Type u} (i : ℤ) (x : α) : List α := if i ≤ 0 then [] else x :: ireplicate (i - 1) x termination_by ireplicate i x => i.toNat decreasing_by simp_wf -- TODO: simplify this kind of proofs simp at * have : 0 ≤ i := by linarith have : 1 ≤ i := by linarith simp [Int.toNat_sub_of_le, *] @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] @[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update] @[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop] @[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop] @[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop] @[simp] theorem itake_nil : itake i ([] : List α) = [] := by simp [itake] @[simp] theorem itake_zero : itake 0 (ls : List α) = [] := by cases ls <;> simp [itake] @[simp] theorem itake_nzero_cons (hne : i ≠ 0) : itake i ((x :: tl) : List α) = x :: itake (i - 1) tl := by simp [*, itake] @[simp] theorem slice_nil : slice i j ([] : List α) = [] := by simp [slice] @[simp] theorem slice_zero : slice 0 0 (ls : List α) = [] := by cases ls <;> simp [slice] @[simp] theorem ireplicate_zero : ireplicate 0 x = [] := by rw [ireplicate]; simp @[simp] theorem ireplicate_nzero_cons (hne : 0 < i) : ireplicate i x = x :: ireplicate (i - 1) x := by rw [ireplicate]; simp [*]; intro; linarith @[simp] theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl := match tl with | [] => by simp [slice]; simp [*] | hd :: tl => if h: i - 1 = 0 then by have : i = 1 := by int_tac simp [*, slice] else have := slice_nzero_cons (i - 1) (j - 1) hd tl h by conv => lhs; simp [slice, *] conv at this => lhs; simp [slice, *] simp [*, slice] @[simp] theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : ireplicate l x = replicate l.toNat x := if hz: l = 0 then by simp [*] else by have : 0 < l := by int_tac have hr := ireplicate_replicate (l - 1) x (by int_tac) simp [*] have hl : l.toNat = .succ (l.toNat - 1) := by cases hl: l.toNat <;> simp_all conv => rhs; rw[hl] termination_by ireplicate_replicate l x h => l.toNat decreasing_by simp_wf -- TODO: simplify this kind of proofs simp at * have : 0 ≤ l := by linarith have : 1 ≤ l := by linarith simp [Int.toNat_sub_of_le, *] @[simp] theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : (ireplicate l x).len = l := if hz: l = 0 then by simp [*] else by have : 0 < l := by int_tac have hr := ireplicate_len (l - 1) x (by int_tac) simp [*] termination_by ireplicate_len l x h => l.toNat decreasing_by simp_wf -- TODO: simplify this kind of proofs simp at * have : 0 ≤ l := by linarith have : 1 ≤ l := by linarith simp [Int.toNat_sub_of_le, *] theorem len_eq_length (ls : List α) : ls.len = ls.length := by induction ls . rfl . simp [*, Int.ofNat_succ, Int.add_comm] @[simp] theorem len_append (l1 l2 : List α) : (l1 ++ l2).len = l1.len + l2.len := by -- Remark: simp loops here because of the following rewritings: -- @Nat.cast_add: ↑(List.length l1 + List.length l2) ==> ↑(List.length l1) + ↑(List.length l2) -- Int.ofNat_add_ofNat: ↑(List.length l1) + ↑(List.length l2) ==> ↑(List.length l1 + List.length l2) -- TODO: post an issue? simp only [len_eq_length] simp only [length_append] simp only [Int.ofNat_add] @[simp] theorem length_update (ls : List α) (i : Int) (x : α) : (ls.update i x).length = ls.length := by revert i induction ls <;> simp_all [length, update] intro; split <;> simp [*] @[simp] theorem len_update (ls : List α) (i : Int) (x : α) : (ls.update i x).len = ls.len := by simp [len_eq_length] @[simp] theorem len_map (ls : List α) (f : α → β) : (ls.map f).len = ls.len := by simp [len_eq_length] theorem left_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.length = l1'.length) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by revert l1' induction l1 . intro l1'; cases l1' <;> simp [*] . intro l1'; cases l1' <;> simp_all; tauto theorem right_length_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.length = l2'.length) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by have := left_length_eq_append_eq l1 l2 l1' l2' constructor <;> intro heq2 <;> have : l1.length + l2.length = l1'.length + l2'.length := by have : (l1 ++ l2).length = (l1' ++ l2').length := by simp [*] simp only [length_append] at this apply this . simp [heq] at this tauto . tauto theorem left_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l1.len = l1'.len) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by simp [len_eq_length] at heq apply left_length_eq_append_eq assumption theorem right_len_eq_append_eq (l1 l2 l1' l2' : List α) (heq : l2.len = l2'.len) : l1 ++ l2 = l1' ++ l2' ↔ l1 = l1' ∧ l2 = l2' := by simp [len_eq_length] at heq apply right_length_eq_append_eq assumption @[simp] theorem index_append_beg [Inhabited α] (i : Int) (l0 l1 : List α) (_ : 0 ≤ i) (_ : i < l0.len) : (l0 ++ l1).index i = l0.index i := match l0 with | [] => by simp_all; int_tac | hd :: tl => if hi : i = 0 then by simp_all else by have := index_append_beg (i - 1) tl l1 (by int_tac) (by simp_all; int_tac) simp_all @[simp] theorem index_append_end [Inhabited α] (i : Int) (l0 l1 : List α) (_ : l0.len ≤ i) (_ : i < l0.len + l1.len) : (l0 ++ l1).index i = l1.index (i - l0.len) := match l0 with | [] => by simp_all | hd :: tl => have : ¬ i = 0 := by simp_all; int_tac have := index_append_end (i - 1) tl l1 (by simp_all; int_tac) (by simp_all; int_tac) -- TODO: canonize arith expressions have : i - 1 - len tl = i - (1 + len tl) := by int_tac by simp_all open Arith in @[simp] theorem idrop_eq_nil_of_le (hineq : ls.len ≤ i) : idrop i ls = [] := by revert i induction ls <;> simp [*] rename_i hd tl hi intro i hineq if heq: i = 0 then simp [*] at * have := tl.len_pos linarith else simp at hineq have : 0 < i := by int_tac simp [*] apply hi linarith theorem idrop_len_le (i : Int) (ls : List α) : (ls.idrop i).len ≤ ls.len := match ls with | [] => by simp | hd :: tl => if h: i = 0 then by simp [*] else have := idrop_len_le (i - 1) tl by simp [*]; linarith @[simp] theorem idrop_len (i : Int) (ls : List α) (_ : 0 ≤ i) (_ : i ≤ ls.len) : (ls.idrop i).len = ls.len - i := match ls with | [] => by simp_all; linarith | hd :: tl => if h: i = 0 then by simp [*] else have := idrop_len (i - 1) tl (by int_tac) (by simp at *; int_tac) by simp [*] at *; int_tac theorem itake_len_le (i : Int) (ls : List α) : (ls.itake i).len ≤ ls.len := match ls with | [] => by simp | hd :: tl => if h: i = 0 then by simp [*]; int_tac else have := itake_len_le (i - 1) tl by simp [*] @[simp] theorem itake_len (i : Int) (ls : List α) (_ : 0 ≤ i) (_ : i ≤ ls.len) : (ls.itake i).len = i := match ls with | [] => by simp_all; int_tac | hd :: tl => if h: i = 0 then by simp [*] else have := itake_len (i - 1) tl (by int_tac) (by simp at *; int_tac) by simp [*] theorem slice_len_le (i j : Int) (ls : List α) : (ls.slice i j).len ≤ ls.len := by simp [slice] have := ls.idrop_len_le i have := (ls.idrop i).itake_len_le (j - i) int_tac @[simp] theorem index_idrop [Inhabited α] (i : Int) (j : Int) (ls : List α) (_ : 0 ≤ i) (_ : 0 ≤ j) (_ : i + j < ls.len) : (ls.idrop i).index j = ls.index (i + j) := match ls with | [] => by simp at *; int_tac | hd :: tl => if h: i = 0 then by simp [*] else by have : ¬ i + j = 0 := by int_tac simp [*] -- TODO: rewriting rule: ¬ i = 0 → 0 ≤ i → 0 < i ? have := index_idrop (i - 1) j tl (by int_tac) (by simp at *; int_tac) (by simp at *; int_tac) -- TODO: canonize add/subs? have : i - 1 + j = i + j - 1 := by int_tac simp [*] @[simp] theorem index_itake [Inhabited α] (i : Int) (j : Int) (ls : List α) (_ : 0 ≤ j) (_ : j < i) (_ : j < ls.len) : (ls.itake i).index j = ls.index j := match ls with | [] => by simp at * | hd :: tl => have : ¬ 0 = i := by int_tac -- TODO: this is slightly annoying if h: j = 0 then by simp [*] at * else by simp [*] -- TODO: rewriting rule: ¬ i = 0 → 0 ≤ i → 0 < i ? have := index_itake (i - 1) (j - 1) tl (by simp at *; int_tac) (by simp at *; int_tac) (by simp at *; int_tac) simp [*] @[simp] theorem index_slice [Inhabited α] (i j k : Int) (ls : List α) (_ : 0 ≤ i) (_ : j ≤ ls.len) (_ : 0 ≤ k) (_ : i + k < j) : (ls.slice i j).index k = ls.index (i + k) := match ls with | [] => by simp at *; int_tac | hd :: tl => if h: i = 0 then by simp [*, slice] at * apply index_itake <;> simp_all int_tac else by have : ¬ i + k = 0 := by int_tac simp [*] -- TODO: tactics simp_int_tac/simp_scalar_tac? have := index_slice (i - 1) (j - 1) k tl (by simp at *; int_tac) (by simp at *; int_tac) (by simp at *; int_tac) (by simp at *; int_tac) have : (i - 1 + k) = (i + k - 1) := by int_tac -- TODO: canonize add/sub simp [*] @[simp] theorem index_itake_append_beg [Inhabited α] (i j : Int) (l0 l1 : List α) (_ : 0 ≤ j) (_ : j < i) (_ : i ≤ l0.len) : ((l0 ++ l1).itake i).index j = l0.index j := match l0 with | [] => by simp at * int_tac | hd :: tl => have : ¬ i = 0 := by simp at *; int_tac if hj : j = 0 then by simp [*] else by have := index_itake_append_beg (i - 1) (j - 1) tl l1 (by simp_all; int_tac) (by simp_all) (by simp_all; int_tac) simp [*] @[simp] theorem index_itake_append_end [Inhabited α] (i j : Int) (l0 l1 : List α) (_ : l0.len ≤ j) (_ : j < i) (_ : i ≤ l0.len + l1.len) : ((l0 ++ l1).itake i).index j = l1.index (j - l0.len) := match l0 with | [] => by simp at * have := index_itake i j l1 (by simp_all) (by simp_all) (by simp_all; int_tac) simp [*] | hd :: tl => have : ¬ i = 0 := by simp at *; int_tac if hj : j = 0 then by simp_all; int_tac -- Contradiction else by have := index_itake_append_end (i - 1) (j - 1) tl l1 (by simp_all; int_tac) (by simp_all) (by simp_all; int_tac) -- TODO: normalization of add/sub have : j - 1 - len tl = j - (1 + len tl) := by int_tac simp_all @[simp] theorem index_ne {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (j: ℤ) (x: α) : 0 ≤ i → i < l.len → 0 ≤ j → j < l.len → j ≠ i → (l.update i x).index j = l.index j := λ _ _ _ _ _ => match l with | [] => by simp at * | hd :: tl => if h: i = 0 then have : j ≠ 0 := by scalar_tac by simp [*] else if h : j = 0 then have : i ≠ 0 := by scalar_tac by simp [*] else by simp [*] simp at * apply index_ne <;> scalar_tac @[simp] theorem index_eq {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (x: α) : 0 ≤ i → i < l.len → (l.update i x).index i = x := fun _ _ => match l with | [] => by simp at *; scalar_tac | hd :: tl => if h: i = 0 then by simp [*] else by simp [*] simp at * apply index_eq <;> scalar_tac theorem update_map_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) : (ls.update i x).map f = (ls.map f).update i (f x) := match ls with | [] => by simp | hd :: tl => if h : i = 0 then by simp [*] else have hi := update_map_eq tl (i - 1) x f by simp [*] theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x : List α) (h0 : 0 ≤ i) (h1 : i < ls.len) : (ls.update i x).flatten.len = ls.flatten.len + x.len - (ls.index i).len := match ls with | [] => by simp at h1; int_tac | hd :: tl => by simp at h1 if h : i = 0 then simp [*]; int_tac else have hi := len_flatten_update_eq tl (i - 1) x (by int_tac) (by int_tac) simp [*] int_tac @[simp] theorem index_map_eq {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] (ls : List α) (i : Int) (f : α → β) (h0 : 0 ≤ i) (h1 : i < ls.len) : (ls.map f).index i = f (ls.index i) := match ls with | [] => by simp at h1; int_tac | hd :: tl => if h : i = 0 then by simp [*] else have hi := index_map_eq tl (i - 1) f (by int_tac) (by simp at h1; int_tac) by simp [*] theorem replace_slice_index [Inhabited α] (start end_ : Int) (l nl : List α) (_ : 0 ≤ start) (_ : start < end_) (_ : end_ ≤ l.len) (_ : nl.len = end_ - start) : let l1 := l.replace_slice start end_ nl (∀ i, 0 ≤ i → i < start → l1.index i = l.index i) ∧ (∀ i, start ≤ i → i < end_ → l1.index i = nl.index (i - start)) ∧ (∀ i, end_ ≤ i → i < l.len → l1.index i = l.index i) := by -- let s_end := s.val ++ a.val.idrop r.end_.val -- We need those assumptions everywhere -- have : 0 ≤ start := by scalar_tac have : start ≤ l.len := by int_tac simp only [replace_slice] split_conjs . intro i _ _ -- Introducing exactly the assumptions we need to make the rewriting work have : i < l.len := by int_tac simp_all . intro i _ _ have : (List.itake start l).len ≤ i := by simp_all have : i < (List.itake start l).len + (nl ++ List.idrop end_ l).len := by simp_all; int_tac simp_all . intro i _ _ have : 0 ≤ end_ := by scalar_tac have : end_ ≤ l.len := by int_tac have : (List.itake start l).len ≤ i := by simp_all; int_tac have : i < (List.itake start l).len + (nl ++ List.idrop end_ l).len := by simp_all simp_all @[simp] theorem allP_nil {α : Type u} (p: α → Prop) : allP [] p := by simp [allP, foldr] @[simp] theorem allP_cons {α : Type u} (hd: α) (tl : List α) (p: α → Prop) : allP (hd :: tl) p ↔ p hd ∧ allP tl p := by simp [allP, foldr] @[simp] theorem pairwise_rel_nil {α : Type u} (rel : α → α → Prop) : pairwise_rel rel [] := by simp [pairwise_rel] @[simp] theorem pairwise_rel_cons {α : Type u} (rel : α → α → Prop) (hd: α) (tl: List α) : pairwise_rel rel (hd :: tl) ↔ allP tl (rel hd) ∧ pairwise_rel rel tl := by simp [pairwise_rel] end Lemmas end List