/- This file contains tactics to solve arithmetic goals -/ import Lean import Lean.Meta.Tactic.Simp import Init.Data.List.Basic import Mathlib.Tactic.Linarith -- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet --import Mathlib.Tactic.Omega import Base.Utils import Base.Arith.Base namespace Arith open Utils -- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)` -- but the lookup didn't work class HasIntProp (a : Sort u) where prop_ty : a → Prop prop : ∀ x:a, prop_ty x class PropHasImp (x : Prop) where concl : Prop prop : x → concl instance (p : Int → Prop) : HasIntProp (Subtype p) where prop_ty := λ x => p x prop := λ x => x.property -- This also works for `x ≠ y` because this expression reduces to `¬ x = y` -- and `Ne` is marked as `reducible` instance (x y : Int) : PropHasImp (¬ x = y) where concl := x < y ∨ x > y prop := λ (h:x ≠ y) => ne_is_lt_or_gt h -- Check if a proposition is a linear integer proposition. -- We notably use this to check the goals. class IsLinearIntProp (x : Prop) where instance (x y : Int) : IsLinearIntProp (x < y) where instance (x y : Int) : IsLinearIntProp (x > y) where instance (x y : Int) : IsLinearIntProp (x ≤ y) where instance (x y : Int) : IsLinearIntProp (x ≥ y) where instance (x y : Int) : IsLinearIntProp (x ≥ y) where instance (x y : Int) : IsLinearIntProp (x = y) where /- It seems we don't need to do any special preprocessing when the *goal* has the following shape - I guess `linarith` automatically calls `intro` -/ instance (x y : Int) : IsLinearIntProp (¬ x = y) where open Lean Lean.Elab Lean.Meta -- Explore a term by decomposing the applications (we explore the applied -- functions and their arguments, but ignore lambdas, forall, etc. - -- should we go inside?). -- Remark: we pretend projections are applications, and explore the projected -- terms. partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do -- Explore the current expression let e := e.consumeMData let s ← k s e -- Recurse match e with | .proj _ _ e' => foldTermApps k s e' | .app .. => e.withApp fun f args => do let s ← k s f args.foldlM (foldTermApps k) s | _ => pure s -- Provided a function `k` which lookups type class instances on an expression, -- collect all the instances lookuped by applying `k` on the sub-expressions of `e`. def collectInstances (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do let k s e := do match ← k e with | none => pure s | some i => pure (s.insert i) foldTermApps k s e -- Similar to `collectInstances`, but explores all the local declarations in the -- main context. def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do Tactic.withMainContext do -- Get the local context let ctx ← Lean.MonadLCtx.getLCtx -- Just a matter of precaution let ctx ← instantiateLCtxMVars ctx -- Initialize the hashset let hs := HashSet.empty -- Explore the declarations let decls ← ctx.getDecls let hs ← decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs -- Also explore the goal collectInstances k hs (← Tactic.getMainTarget) -- Helper def lookupProp (fName : String) (className : Name) (e : Expr) : MetaM (Option Expr) := do trace[Arith] fName -- TODO: do we need Lean.observing? -- This actually eliminates the error messages trace[Arith] m!"{fName}: {e}" Lean.observing? do trace[Arith] m!"{fName}: observing: {e}" let ty ← Lean.Meta.inferType e let hasProp ← mkAppM className #[ty] let hasPropInst ← trySynthInstance hasProp match hasPropInst with | LOption.some i => trace[Arith] "Found {fName} instance" let i_prop ← mkProjection i (Name.mkSimple "prop") some (← mkAppM' i_prop #[e]) | _ => none -- Return an instance of `HasIntProp` for `e` if it has some def lookupHasIntProp (e : Expr) : MetaM (Option Expr) := lookupProp "lookupHasIntProp" ``HasIntProp e -- Collect the instances of `HasIntProp` for the subexpressions in the context def collectHasIntPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do collectInstancesFromMainCtx lookupHasIntProp -- Return an instance of `PropHasImp` for `e` if it has some def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do trace[Arith] m!"lookupPropHasImp: {e}" -- TODO: do we need Lean.observing? -- This actually eliminates the error messages Lean.observing? do trace[Arith] "lookupPropHasImp: observing: {e}" let ty ← Lean.Meta.inferType e trace[Arith] "lookupPropHasImp: ty: {ty}" let cl ← mkAppM ``PropHasImp #[ty] let inst ← trySynthInstance cl match inst with | LOption.some i => trace[Arith] "Found PropHasImp instance" let i_prop ← mkProjection i (Name.mkSimple "prop") some (← mkAppM' i_prop #[e]) | _ => none -- Collect the instances of `PropHasImp` for the subexpressions in the context def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do collectInstancesFromMainCtx lookupPropHasImp elab "display_prop_has_imp_instances" : tactic => do trace[Arith] "Displaying the PropHasImp instances" let hs ← collectPropHasImpInstancesFromMainCtx hs.forM fun e => do trace[Arith] "+ PropHasImp instance: {e}" example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by display_prop_has_imp_instances simp -- Lookup instances in a context and introduce them with additional declarations. def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do let hs ← collectInstancesFromMainCtx lookup hs.toArray.mapM fun e => do let type ← inferType e let name ← mkFreshAnonPropUserName -- Add a declaration let nval ← Utils.addDeclTac name e type (asLet := false) -- Simplify to unfold the declaration to unfold (i.e., the projector) Utils.simpAt true [declToUnfold] [] [] (Location.targets #[mkIdent name] false) -- Return the new value pure nval def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do trace[Arith] "Introducing the HasIntProp instances" introInstances ``HasIntProp.prop_ty lookupHasIntProp -- Lookup the instances of `HasIntProp for all the sub-expressions in the context, -- and introduce the corresponding assumptions elab "intro_has_int_prop_instances" : tactic => do let _ ← introHasIntPropInstances -- Lookup the instances of `PropHasImp for all the sub-expressions in the context, -- and introduce the corresponding assumptions elab "intro_prop_has_imp_instances" : tactic => do trace[Arith] "Introducing the PropHasImp instances" let _ ← introInstances ``PropHasImp.concl lookupPropHasImp example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by intro_prop_has_imp_instances rename_i h split_disj h . linarith . linarith /- Boosting a bit the linarith tac. We do the following: - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we introduce two goals with the assumptions `x < y` and `x > y` TODO: we could create a PR for mathlib. -/ def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do Tactic.withMainContext do -- Lookup the instances of PropHasImp (this is how we detect assumptions -- of the proper shape), introduce assumptions in the context and split -- on those -- TODO: get rid of the assumptions that we split let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := match asms with | [] => pure () | asm :: asms => let k := splitOnAsms asms Utils.splitDisjTac asm k k -- Introduce the scalar bounds let _ ← introHasIntPropInstances -- Extra preprocessing, before we split on the disjunctions extraPreprocess -- Split - note that the extra-preprocessing step might actually have -- proven the goal (by doing simplifications for instance) Tactic.allGoals do let asms ← introInstances ``PropHasImp.concl lookupPropHasImp splitOnAsms asms.toList elab "int_tac_preprocess" : tactic => intTacPreprocess (do pure ()) -- Check if the goal is a linear arithmetic goal def goalIsLinearInt : Tactic.TacticM Bool := do Tactic.withMainContext do let gty ← Tactic.getMainTarget match ← trySynthInstance (← mkAppM ``IsLinearIntProp #[gty]) with | .some _ => pure true | _ => pure false def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do Tactic.withMainContext do Tactic.focus do let g ← Tactic.getMainGoal trace[Arith] "Original goal: {g}" -- Introduce all the universally quantified variables (includes the assumptions) let (_, g) ← g.intros Tactic.setGoals [g] -- Preprocess - wondering if we should do this before or after splitting -- the goal. I think before leads to a smaller proof term? Tactic.allGoals (intTacPreprocess extraPreprocess) -- More preprocessing Tactic.allGoals (Utils.tryTac (Utils.simpAt true [] [``nat_zero_eq_int_zero] [] .wildcard)) -- Split the conjunctions in the goal if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) -- Call linarith let linarith := do let cfg : Linarith.LinarithConfig := { -- We do this with our custom preprocessing splitNe := false } Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg Tactic.allGoals do -- We check if the goal is a linear arithmetic goal: if yes, we directly -- call linarith, otherwise we first apply exfalso (we do this because -- linarith is too general and sometimes fails to do this correctly). if ← goalIsLinearInt then do trace[Arith] "linarith goal: {← Tactic.getMainGoal}" linarith else do let g ← Tactic.getMainGoal let gs ← g.apply (Expr.const ``False.elim [.zero]) let goals ← Tactic.getGoals Tactic.setGoals (gs ++ goals) Tactic.allGoals do trace[Arith] "linarith goal: {← Tactic.getMainGoal}" linarith elab "int_tac" args:(" split_goal"?): tactic => let split := args.raw.getArgs.size > 0 intTac split (do pure ()) -- For termination proofs syntax "int_decr_tac" : tactic macro_rules | `(tactic| int_decr_tac) => `(tactic| simp_wf; -- TODO: don't use a macro (namespace problems) (first | apply Arith.to_int_to_nat_lt | apply Arith.to_int_sub_to_nat_lt) <;> simp_all <;> int_tac) example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac_preprocess linarith linarith example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac -- Checking that things append correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by int_tac split_goal -- Checking that things append correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by int_tac split_goal -- Checking that we can prove exfalso example (a : Prop) (x : Int) (h0: 0 < x) (h1: x < 0) : a := by int_tac end Arith