/- This file contains tactics to solve arithmetic goals -/ import Lean import Lean.Meta.Tactic.Simp import Init.Data.List.Basic import Mathlib.Tactic.RunCmd import Mathlib.Tactic.Linarith -- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet --import Mathlib.Tactic.Omega import Base.Primitives import Base.Utils import Base.Arith.Base namespace Arith open Primitives Utils -- TODO: move instance Vec.cast (a : Type): Coe (Vec a) (List a) where coe := λ v => v.val -- TODO: move /- Remark: we can't write the following instance because of restrictions about the type class parameters (`ty` doesn't appear in the return type, which is forbidden): ``` instance Scalar.cast (ty : ScalarTy) : Coe (Scalar ty) Int where coe := λ v => v.val ``` -/ def Scalar.toInt {ty : ScalarTy} (x : Scalar ty) : Int := x.val -- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)` -- but the lookup didn't work class HasScalarProp (a : Sort u) where prop_ty : a → Prop prop : ∀ x:a, prop_ty x class HasIntProp (a : Sort u) where prop_ty : a → Prop prop : ∀ x:a, prop_ty x instance (ty : ScalarTy) : HasScalarProp (Scalar ty) where -- prop_ty is inferred prop := λ x => And.intro x.hmin x.hmax instance (a : Type) : HasScalarProp (Vec a) where prop_ty := λ v => v.val.length ≤ Scalar.max ScalarTy.Usize prop := λ ⟨ _, l ⟩ => l class PropHasImp (x : Prop) where concl : Prop prop : x → concl -- This also works for `x ≠ y` because this expression reduces to `¬ x = y` -- and `Ne` is marked as `reducible` instance (x y : Int) : PropHasImp (¬ x = y) where concl := x < y ∨ x > y prop := λ (h:x ≠ y) => ne_is_lt_or_gt h open Lean Lean.Elab Command Term Lean.Meta -- Small utility: print all the declarations in the context elab "print_all_decls" : tactic => do let ctx ← Lean.MonadLCtx.getLCtx for decl in ← ctx.getDecls do let ty ← Lean.Meta.inferType decl.toExpr logInfo m!"{decl.toExpr} : {ty}" pure () -- Explore a term by decomposing the applications (we explore the applied -- functions and their arguments, but ignore lambdas, forall, etc. - -- should we go inside?). partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do -- We do it in a very simpler manner: we deconstruct applications, -- and recursively explore the sub-expressions. Note that we do -- not go inside foralls and abstractions (should we?). e.withApp fun f args => do let s ← k s f args.foldlM (foldTermApps k) s -- Provided a function `k` which lookups type class instances on an expression, -- collect all the instances lookuped by applying `k` on the sub-expressions of `e`. def collectInstances (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do let k s e := do match ← k e with | none => pure s | some i => pure (s.insert i) foldTermApps k s e -- Similar to `collectInstances`, but explores all the local declarations in the -- main context. def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do Tactic.withMainContext do -- Get the local context let ctx ← Lean.MonadLCtx.getLCtx -- Just a matter of precaution let ctx ← instantiateLCtxMVars ctx -- Initialize the hashset let hs := HashSet.empty -- Explore the declarations let decls ← ctx.getDecls decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs -- Helper def lookupProp (fName : String) (className : Name) (e : Expr) : MetaM (Option Expr) := do trace[Arith] fName -- TODO: do we need Lean.observing? -- This actually eliminates the error messages Lean.observing? do trace[Arith] m!"{fName}: observing" let ty ← Lean.Meta.inferType e let hasProp ← mkAppM className #[ty] let hasPropInst ← trySynthInstance hasProp match hasPropInst with | LOption.some i => trace[Arith] "Found HasScalarProp instance" let i_prop ← mkProjection i (Name.mkSimple "prop") some (← mkAppM' i_prop #[e]) | _ => none -- Return an instance of `HasIntProp` for `e` if it has some def lookupHasIntProp (e : Expr) : MetaM (Option Expr) := lookupProp "lookupHasScalarProp" ``HasIntProp e -- Return an instance of `HasScalarProp` for `e` if it has some def lookupHasScalarProp (e : Expr) : MetaM (Option Expr) := lookupProp "lookupHasScalarProp" ``HasScalarProp e -- Collect the instances of `HasIntProp` for the subexpressions in the context def collectHasIntPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do collectInstancesFromMainCtx lookupHasIntProp -- Collect the instances of `HasScalarProp` for the subexpressions in the context def collectHasScalarPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do collectInstancesFromMainCtx lookupHasScalarProp elab "display_has_prop_instances" : tactic => do trace[Arith] "Displaying the HasScalarProp instances" let hs ← collectHasScalarPropInstancesFromMainCtx hs.forM fun e => do trace[Arith] "+ HasScalarProp instance: {e}" example (x : U32) : True := by let i : HasScalarProp U32 := inferInstance have p := @HasScalarProp.prop _ i x simp only [HasScalarProp.prop_ty] at p display_has_prop_instances simp -- Return an instance of `PropHasImp` for `e` if it has some def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do trace[Arith] "lookupPropHasImp" -- TODO: do we need Lean.observing? -- This actually eliminates the error messages Lean.observing? do trace[Arith] "lookupPropHasImp: observing" let ty ← Lean.Meta.inferType e trace[Arith] "lookupPropHasImp: ty: {ty}" let cl ← mkAppM ``PropHasImp #[ty] let inst ← trySynthInstance cl match inst with | LOption.some i => trace[Arith] "Found PropHasImp instance" let i_prop ← mkProjection i (Name.mkSimple "prop") some (← mkAppM' i_prop #[e]) | _ => none -- Collect the instances of `PropHasImp` for the subexpressions in the context def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do collectInstancesFromMainCtx lookupPropHasImp elab "display_prop_has_imp_instances" : tactic => do trace[Arith] "Displaying the PropHasImp instances" let hs ← collectPropHasImpInstancesFromMainCtx hs.forM fun e => do trace[Arith] "+ PropHasImp instance: {e}" example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by display_prop_has_imp_instances simp -- Lookup instances in a context and introduce them with additional declarations. def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do let hs ← collectInstancesFromMainCtx lookup hs.toArray.mapM fun e => do let type ← inferType e let name ← mkFreshUserName `h -- Add a declaration let nval ← Utils.addDeclTac name e type (asLet := false) -- Simplify to unfold the declaration to unfold (i.e., the projector) Utils.simpAt [declToUnfold] [] [] (Tactic.Location.targets #[mkIdent name] false) -- Return the new value pure nval def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do trace[Arith] "Introducing the HasIntProp instances" introInstances ``HasIntProp.prop_ty lookupHasIntProp def introHasScalarPropInstances : Tactic.TacticM (Array Expr) := do trace[Arith] "Introducing the HasScalarProp instances" introInstances ``HasScalarProp.prop_ty lookupHasScalarProp -- Lookup the instances of `HasScalarProp for all the sub-expressions in the context, -- and introduce the corresponding assumptions elab "intro_has_prop_instances" : tactic => do let _ ← introHasScalarPropInstances example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by intro_has_prop_instances simp [*] example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by intro_has_prop_instances simp_all [Scalar.max, Scalar.min] -- Lookup the instances of `PropHasImp for all the sub-expressions in the context, -- and introduce the corresponding assumptions elab "intro_prop_has_imp_instances" : tactic => do trace[Arith] "Introducing the PropHasImp instances" let _ ← introInstances ``PropHasImp.concl lookupPropHasImp example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by intro_prop_has_imp_instances rename_i h split_disj h . linarith . linarith /- Boosting a bit the linarith tac. We do the following: - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we introduce two goals with the assumptions `x < y` and `x > y` TODO: we could create a PR for mathlib. -/ def intTacPreprocess : Tactic.TacticM Unit := do Tactic.withMainContext do -- Lookup the instances of PropHasImp (this is how we detect assumptions -- of the proper shape), introduce assumptions in the context and split -- on those -- TODO: get rid of the assumptions that we split let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := match asms with | [] => pure () | asm :: asms => let k := splitOnAsms asms Utils.splitDisjTac asm k k -- Introduce let _ ← introHasIntPropInstances let asms ← introInstances ``PropHasImp.concl lookupPropHasImp -- Split splitOnAsms asms.toList elab "int_tac_preprocess" : tactic => intTacPreprocess def intTac : Tactic.TacticM Unit := do Tactic.withMainContext do Tactic.focus do -- Preprocess - wondering if we should do this before or after splitting -- the goal. I think before leads to a smaller proof term? Tactic.allGoals intTacPreprocess -- Split the conjunctions in the goal Utils.repeatTac Utils.splitConjTarget -- Call linarith let linarith := let cfg : Linarith.LinarithConfig := { -- We do this with our custom preprocessing splitNe := false } Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg Tactic.allGoals linarith elab "int_tac" : tactic => intTac example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac_preprocess linarith linarith example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac -- Checking that things append correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by int_tac -- Checking that things append correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by int_tac def scalarTacPreprocess (tac : Tactic.TacticM Unit) : Tactic.TacticM Unit := do Tactic.withMainContext do -- Introduce the scalar bounds let _ ← introHasScalarPropInstances Tactic.allGoals do -- Inroduce the bounds for the isize/usize types let add (e : Expr) : Tactic.TacticM Unit := do let ty ← inferType e let _ ← Utils.addDeclTac (← mkFreshUserName `h) e ty (asLet := false) add (← mkAppM ``Scalar.cMin_bound #[.const ``ScalarTy.Isize []]) add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []]) add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []]) -- Reveal the concrete bounds Utils.simpAt [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min, ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max, ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min, ``U8.max, ``U16.max, ``U32.max, ``U64.max, ``U128.max ] [] [] .wildcard -- Finish the proof tac elab "scalar_tac_preprocess" : tactic => scalarTacPreprocess intTacPreprocess -- A tactic to solve linear arithmetic goals in the presence of scalars def scalarTac : Tactic.TacticM Unit := do scalarTacPreprocess intTac elab "scalar_tac" : tactic => scalarTac example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by scalar_tac example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by scalar_tac end Arith