signature testHashmapTheory = sig type thm = Thm.thm (* Axioms *) val insert_def : thm (* Definitions *) val distinct_keys_def : thm val list_t_TY_DEF : thm val list_t_case_def : thm val list_t_size_def : thm val list_t_v_def : thm val lookup_def : thm (* Theorems *) val datatype_list_t : thm val index_eq : thm val insert_lem : thm val list_t_11 : thm val list_t_Axiom : thm val list_t_case_cong : thm val list_t_case_eq : thm val list_t_distinct : thm val list_t_induction : thm val list_t_nchotomy : thm val lookup_raw_def : thm val lookup_raw_ind : thm val nth_mut_fwd_def : thm val nth_mut_fwd_ind : thm val nth_mut_fwd_lem : thm val testHashmap_grammars : type_grammar.grammar * term_grammar.grammar (* [primitives] Parent theory of "testHashmap" [insert_def] Axiom [oracles: ] [axioms: insert_def] [] ⊢ insert key value ls = case ls of ListCons (ckey,cvalue) tl => if ckey = key then Return (ListCons (ckey,value) tl) else do tl0 <- insert key value tl; Return (ListCons (ckey,cvalue) tl0) od | ListNil => Return (ListCons (key,value) ListNil) [distinct_keys_def] Definition ⊢ ∀ls. distinct_keys ls ⇔ ∀i j. 0 < i ⇒ i < len ls ⇒ 0 < j ⇒ j < len ls ⇒ FST (index i ls) = FST (index j ls) ⇒ i = j [list_t_TY_DEF] Definition ⊢ ∃rep. TYPE_DEFINITION (λa0'. ∀ $var$('list_t'). (∀a0'. (∃a0 a1. a0' = (λa0 a1. ind_type$CONSTR 0 a0 (ind_type$FCONS a1 (λn. ind_type$BOTTOM))) a0 a1 ∧ $var$('list_t') a1) ∨ a0' = ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒ $var$('list_t') a0') ⇒ $var$('list_t') a0') rep [list_t_case_def] Definition ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧ ∀f v. list_t_CASE ListNil f v = v [list_t_size_def] Definition ⊢ (∀f a0 a1. list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧ ∀f. list_t_size f ListNil = 0 [list_t_v_def] Definition ⊢ list_t_v ListNil = [] ∧ ∀x tl. list_t_v (ListCons x tl) = x::list_t_v tl [lookup_def] Definition ⊢ ∀key ls. lookup key ls = lookup_raw key (list_t_v ls) [datatype_list_t] Theorem ⊢ DATATYPE (list_t ListCons ListNil) [index_eq] Theorem ⊢ (∀x ls. index 0 (x::ls) = x) ∧ ∀i x ls. index i (x::ls) = if 0 < i ∨ 0 ≤ i ∧ i ≠ 0 then index (i − 1) ls else if i = 0 then x else ARB [insert_lem] Theorem [oracles: DISK_THM] [axioms: insert_def] [] ⊢ ∀ls key value. distinct_keys (list_t_v ls) ⇒ case insert key value ls of Return ls1 => lookup key ls1 = SOME value ∧ ∀k. k ≠ key ⇒ lookup k ls = lookup k ls1 | Fail v1 => F | Loop => F [list_t_11] Theorem ⊢ ∀a0 a1 a0' a1'. ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1' [list_t_Axiom] Theorem ⊢ ∀f0 f1. ∃fn. (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧ fn ListNil = f1 [list_t_case_cong] Theorem ⊢ ∀M M' f v. M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧ (M' = ListNil ⇒ v = v') ⇒ list_t_CASE M f v = list_t_CASE M' f' v' [list_t_case_eq] Theorem ⊢ list_t_CASE x f v = v' ⇔ (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v' [list_t_distinct] Theorem ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil [list_t_induction] Theorem ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l [list_t_nchotomy] Theorem ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil [lookup_raw_def] Theorem ⊢ (∀key. lookup_raw key [] = NONE) ∧ ∀v ls key k. lookup_raw key ((k,v)::ls) = if k = key then SOME v else lookup_raw key ls [lookup_raw_ind] Theorem ⊢ ∀P. (∀key. P key []) ∧ (∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒ ∀v v1. P v v1 [nth_mut_fwd_def] Theorem ⊢ ∀ls i. nth_mut_fwd ls i = case ls of ListCons x tl => if u32_to_int i = 0 then Return x else do i0 <- u32_sub i (int_to_u32 1); nth_mut_fwd tl i0 od | ListNil => Fail Failure [nth_mut_fwd_ind] Theorem ⊢ ∀P. (∀ls i. (∀x tl i0. ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒ P tl i0) ⇒ P ls i) ⇒ ∀v v1. P v v1 [nth_mut_fwd_lem] Theorem ⊢ ∀ls i. u32_to_int i < len (list_t_v ls) ⇒ case nth_mut_fwd ls i of Return x => x = index (u32_to_int i) (list_t_v ls) | Fail v1 => F | Loop => F *) end