open HolKernel boolLib bossLib Parse open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory open primitivesLib val _ = new_theory "testHashmap" (* * Examples of proofs *) Datatype: list_t = ListCons 't list_t | ListNil End val nth_mut_fwd_def = Define ‘ nth_mut_fwd (ls : 't list_t) (i : u32) : 't result = case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); nth_mut_fwd tl i0 od | ListNil => Fail Failure ’ (*** Examples of proofs on [nth] *) val list_t_v_def = Define ‘ list_t_v ListNil = [] /\ list_t_v (ListCons x tl) = x :: list_t_v tl ’ (* TODO: move *) Theorem index_eq: (∀x ls. index 0 (x :: ls) = x) ∧ (∀i x ls. index i (x :: ls) = if (0 < i) ∨ (0 ≤ i ∧ i ≠ 0) then index (i - 1) ls else (if i = 0 then x else ARB)) Proof rw [index_def] >> fs [] >> exfalso >> cooper_tac QED Theorem nth_mut_fwd_spec: !(ls : 't list_t) (i : u32). u32_to_int i < len (list_t_v ls) ==> case nth_mut_fwd ls i of | Return x => x = index (u32_to_int i) (list_t_v ls) | Fail _ => F | Loop => F Proof Induct_on ‘ls’ >> rw [list_t_v_def, len_def] >~ [‘ListNil’] >-(massage >> exfalso >> cooper_tac) >> pure_once_rewrite_tac [nth_mut_fwd_def] >> rw [] >> fs [index_eq] >> progress >> progress QED val _ = new_constant ("insert", “: u32 -> 't -> (u32 # 't) list_t -> (u32 # 't) list_t result”) val insert_def = new_axiom ("insert_def", “ insert (key : u32) (value : 't) (ls : (u32 # 't) list_t) : (u32 # 't) list_t result = case ls of | ListCons (ckey, cvalue) tl => if ckey = key then Return (ListCons (ckey, value) tl) else do tl0 <- insert key value tl; Return (ListCons (ckey, cvalue) tl0) od | ListNil => Return (ListCons (key, value) ListNil) ”) (* Property that keys are pairwise distinct *) val distinct_keys_def = Define ‘ distinct_keys (ls : (u32 # 't) list) = !i j. 0 < i ⇒ i < len ls ==> 0 < j ⇒ j < len ls ==> FST (index i ls) = FST (index j ls) ⇒ i = j ’ val lookup_raw_def = Define ‘ lookup_raw key [] = NONE /\ lookup_raw key ((k, v) :: ls) = if k = key then SOME v else lookup_raw key ls ’ val lookup_def = Define ‘ lookup key ls = lookup_raw key (list_t_v ls) ’ Theorem insert_lem: !ls key value. (* The keys are pairwise distinct *) distinct_keys (list_t_v ls) ==> case insert key value ls of | Return ls1 => (* We updated the binding *) lookup key ls1 = SOME value /\ (* The other bindings are left unchanged *) (!k. k <> key ==> lookup k ls = lookup k ls1) | Fail _ => F | Loop => F Proof Induct_on ‘ls’ >> rw [list_t_v_def] >~ [‘ListNil’] >> pure_once_rewrite_tac [insert_def] >> rw [] >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >> case_tac >> rw [] >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >> progress >- ( (* Disctinct keys *) fs [distinct_keys_def] >> rpt strip_tac >> first_x_assum (qspecl_assume [‘i + 1’, ‘j + 1’]) >> fs [] >> pop_assum irule >> fs [index_eq, add_sub_same_eq, len_def] >> int_tac) >> fs [lookup_def, lookup_raw_def, list_t_v_def] QED val _ = export_theory ()