signature primitivesArithTheory = sig type thm = Thm.thm (* Theorems *) val add_sub_same_eq : thm val ge_eq_le : thm val gt_eq_lt : thm val int_add : thm val int_add_minus_same_eq : thm val int_induction : thm val int_induction_ideal : thm val int_of_num_id : thm val int_of_num_inj : thm val le_eq_ge : thm val lt_eq_gt : thm val not_ge_eq_lt : thm val not_gt_eq_le : thm val not_le_eq_gt : thm val not_lt_eq_ge : thm val num_sub_1_eq : thm val num_sub_eq : thm val pos_div_pos_is_pos : thm val pos_div_pos_le : thm val pos_div_pos_le_init : thm val pos_mod_pos_is_pos : thm val pos_mod_pos_le_init : thm val pos_mul_pos_is_pos : thm val primitivesArith_grammars : type_grammar.grammar * term_grammar.grammar (* [Omega] Parent theory of "primitivesArith" [int_arith] Parent theory of "primitivesArith" [add_sub_same_eq] Theorem ⊢ ∀i j. i + j − j = i [ge_eq_le] Theorem ⊢ ∀x y. x ≥ y ⇔ y ≤ x [gt_eq_lt] Theorem ⊢ ∀x y. x > y ⇔ y < x [int_add] Theorem ⊢ ∀m n. &(m + n) = &m + &n [int_add_minus_same_eq] Theorem ⊢ ∀i j. i + j − j = i [int_induction] Theorem ⊢ ∀P. (∀i. i < 0 ⇒ P i) ∧ P 0 ∧ (∀i. P i ⇒ P (i + 1)) ⇒ ∀i. P i [int_induction_ideal] Theorem ⊢ ∀P. P 0 ∧ (∀i. 0 ≤ i ∧ P i ⇒ P (i + 1)) ⇒ ∀i. 0 ≤ i ⇒ P i [int_of_num_id] Theorem ⊢ ∀i. 0 ≤ i ⇒ &Num i = i [int_of_num_inj] Theorem ⊢ ∀n m. &n = &m ⇒ n = m [le_eq_ge] Theorem ⊢ ∀x y. x ≤ y ⇔ y ≥ x [lt_eq_gt] Theorem ⊢ ∀x y. x < y ⇔ y > x [not_ge_eq_lt] Theorem ⊢ ∀x y. ¬(x ≥ y) ⇔ x < y [not_gt_eq_le] Theorem ⊢ ∀x y. ¬(x > y) ⇔ x ≤ y [not_le_eq_gt] Theorem ⊢ ∀x y. ¬(x ≤ y) ⇔ x > y [not_lt_eq_ge] Theorem ⊢ ∀x y. ¬(x < y) ⇔ x ≥ y [num_sub_1_eq] Theorem ⊢ ∀x y. x = y − 1 ⇒ 0 ≤ x ⇒ Num y = SUC (Num x) [num_sub_eq] Theorem ⊢ ∀x y z. x = y − z ⇒ 0 ≤ x ⇒ 0 ≤ z ⇒ Num y = Num z + Num x [pos_div_pos_is_pos] Theorem ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x / y [pos_div_pos_le] Theorem ⊢ ∀x y d. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 < d ⇒ x ≤ y ⇒ x / d ≤ y / d [pos_div_pos_le_init] Theorem ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x / y ≤ x [pos_mod_pos_is_pos] Theorem ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x % y [pos_mod_pos_le_init] Theorem ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x % y ≤ x [pos_mul_pos_is_pos] Theorem ⊢ ∀x y. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 ≤ x * y *) end