open arithmeticTheory integerTheory open primitivesBaseTacLib val _ = new_theory "primitivesArith" (* TODO: we need a better library of lemmas about arithmetic *) val not_le_eq_gt = store_thm("not_le_eq_gt", “!(x y: int). ~(x <= y) <=> x > y”, cooper_tac) val not_lt_eq_ge = store_thm("not_lt_eq_ge", “!(x y: int). ~(x < y) <=> x >= y”, cooper_tac) (* TODO: add gsymed versions of those as rewriting theorems by default (we only want to manipulate ‘<’ and ‘≤’) *) val not_ge_eq_lt = store_thm("not_ge_eq_lt", “!(x y: int). ~(x >= y) <=> x < y”, cooper_tac) val not_gt_eq_le = store_thm("not_gt_eq_le", “!(x y: int). ~(x > y) <=> x <= y”, cooper_tac) val ge_eq_le = store_thm("ge_eq_le", “!(x y : int). x >= y <=> y <= x”, cooper_tac) val le_eq_ge = store_thm("le_eq_ge", “!(x y : int). x <= y <=> y >= x”, cooper_tac) val gt_eq_lt = store_thm("gt_eq_lt", “!(x y : int). x > y <=> y < x”, cooper_tac) val lt_eq_gt = store_thm("lt_eq_gt", “!(x y : int). x < y <=> y > x”, cooper_tac) (* Miscelleanous *) Theorem int_add_minus_same_eq: ∀ (i j : int). i + j - j = i Proof int_tac QED (* * We generate and save an induction theorem for positive integers *) (* This is the induction theorem we want. Unfortunately, it often can't be applied by [Induct_on]. *) Theorem int_induction_ideal: !(P : int -> bool). P 0 /\ (!i. 0 <= i /\ P i ==> P (i+1)) ==> !i. 0 <= i ==> P i Proof ntac 4 strip_tac >> Induct_on ‘Num i’ >> rpt strip_tac >-(sg ‘i = 0’ >- cooper_tac >> fs []) >> last_assum (qspec_assume ‘i-1’) >> fs [] >> pop_assum irule >> rw [] >> try_tac cooper_tac >> first_assum (qspec_assume ‘i - 1’) >> pop_assum irule >> rw [] >> try_tac cooper_tac QED (* THIS INDUCTION theorem works well with [Induct_on] *) Theorem int_induction: !(P : int -> bool). (∀i. i < 0 ⇒ P i) ∧ P 0 /\ (!i. P i ==> P (i+1)) ==> !i. P i Proof rw [] >> qspec_assume ‘P’ int_induction_ideal >> gvs [] >> Cases_on ‘0 ≤ i’ >> gvs [] >> last_x_assum irule >> int_tac QED val _ = TypeBase.update_induction int_induction Theorem int_of_num_id: ∀i. 0 ≤ i ⇒ &Num i = i Proof fs [INT_OF_NUM] QED Theorem int_add: ∀m n. &(m + n) = &m + &n Proof fs [INT_ADD] QED Theorem int_of_num_inj: !n m. &n = &m ==> n = m Proof rpt strip_tac >> fs [Num] QED (* TODO: use as rewriting theorem by default? *) Theorem add_sub_same_eq: ∀(i j : int). i + j - j = i Proof cooper_tac QED Theorem num_sub_eq: !(x y z : int). x = y - z ==> 0 <= x ==> 0 <= z ==> Num y = Num z + Num x Proof rpt strip_tac >> sg ‘0 <= y’ >- cooper_tac >> rfs [] >> (* Convert to integers *) irule int_of_num_inj >> imp_res_tac int_of_num >> (* Associativity of & *) pure_rewrite_tac [int_add] >> cooper_tac QED Theorem num_sub_1_eq: !(x y : int). x = y - 1 ==> 0 <= x ==> Num y = SUC (Num x) Proof rpt strip_tac >> (* Get rid of the SUC *) sg ‘SUC (Num x) = 1 + Num x’ >-(rw [ADD]) >> rw [] >> (* Massage a bit the goal *) qsuff_tac ‘Num y = Num (y − 1) + Num 1’ >- cooper_tac >> (* Apply the general theorem *) irule num_sub_eq >> cooper_tac QED Theorem pos_mul_pos_is_pos: !(x y : int). 0 <= x ==> 0 <= y ==> 0 <= x * y Proof rpt strip_tac >> sg ‘0 <= &(Num x) * &(Num y)’ >- (rw [INT_MUL_CALCULATE] >> cooper_tac) >> sg_dep_rewrite_all_tac int_of_num >> try_tac cooper_tac >> fs [] QED Theorem pos_div_pos_is_pos: !(x y : int). 0 <= x ==> 0 < y ==> 0 <= x / y Proof rpt strip_tac >> rw [le_eq_ge] >> sg ‘y <> 0’ >- cooper_tac >> qspecl_then [‘\x. x >= 0’, ‘x’, ‘y’] ASSUME_TAC INT_DIV_FORALL_P >> fs [] >> pop_ignore_tac >> rw [] >- cooper_tac >> fs [not_lt_eq_ge] >> (* Proof by contradiction: assume k < 0 *) spose_not_then assume_tac >> fs [not_ge_eq_lt] >> sg ‘k * y = (k + 1) * y + - y’ >- (fs [INT_RDISTRIB] >> cooper_tac) >> sg ‘0 <= (-(k + 1)) * y’ >- (irule pos_mul_pos_is_pos >> cooper_tac) >> cooper_tac QED Theorem pos_div_pos_le: !(x y d : int). 0 <= x ==> 0 <= y ==> 0 < d ==> x <= y ==> x / d <= y / d Proof rpt strip_tac >> sg ‘d <> 0’ >- cooper_tac >> qspecl_assume [‘\k. k = x / d’, ‘x’, ‘d’] INT_DIV_P >> qspecl_assume [‘\k. k = y / d’, ‘y’, ‘d’] INT_DIV_P >> rfs [not_lt_eq_ge] >> try_tac cooper_tac >> sg ‘y = (x / d) * d + (r' + y - x)’ >- cooper_tac >> qspecl_assume [‘(x / d) * d’, ‘r' + y - x’, ‘d’] INT_ADD_DIV >> rfs [] >> Cases_on ‘x = y’ >- fs [] >> sg ‘r' + y ≠ x’ >- cooper_tac >> fs [] >> sg ‘((x / d) * d) / d = x / d’ >- (irule INT_DIV_RMUL >> cooper_tac) >> fs [] >> sg ‘0 <= (r' + y − x) / d’ >- (irule pos_div_pos_is_pos >> cooper_tac) >> metis_tac [INT_LE_ADDR] QED Theorem pos_div_pos_ge: !(x y d : int). 0 <= x ==> 0 <= y ==> 0 < d ==> x >= y ==> x / d >= y / d Proof metis_tac [pos_div_pos_le, ge_eq_le] QED Theorem pos_div_pos_le_init: !(x y : int). 0 <= x ==> 0 < y ==> x / y <= x Proof rpt strip_tac >> sg ‘y <> 0’ >- cooper_tac >> qspecl_assume [‘\k. k = x / y’, ‘x’, ‘y’] INT_DIV_P >> rfs [not_lt_eq_ge] >- cooper_tac >> sg ‘y = (y - 1) + 1’ >- rw [] >> sg ‘x = x / y + ((x / y) * (y - 1) + r)’ >-( qspecl_assume [‘1’, ‘y-1’, ‘x / y’] INT_LDISTRIB >> rfs [] >> cooper_tac ) >> sg ‘!a b c. 0 <= c ==> a = b + c ==> b <= a’ >- cooper_tac >> pop_assum irule >> exists_tac “x / y * (y − 1) + r” >> sg ‘0 <= x / y’ >- (irule pos_div_pos_is_pos >> cooper_tac) >> sg ‘0 <= (x / y) * (y - 1)’ >- (irule pos_mul_pos_is_pos >> cooper_tac) >> cooper_tac QED Theorem pos_mod_pos_is_pos: !(x y : int). 0 <= x ==> 0 < y ==> 0 <= x % y Proof rpt strip_tac >> sg ‘y <> 0’ >- cooper_tac >> imp_res_tac INT_DIVISION >> first_x_assum (qspec_then ‘x’ assume_tac) >> first_x_assum (qspec_then ‘x’ assume_tac) >> sg ‘~(y < 0)’ >- cooper_tac >> fs [] QED Theorem pos_mod_pos_le_init: !(x y : int). 0 <= x ==> 0 < y ==> x % y <= x Proof rpt strip_tac >> sg ‘y <> 0’ >- cooper_tac >> imp_res_tac INT_DIVISION >> first_x_assum (qspec_then ‘x’ assume_tac) >> first_x_assum (qspec_then ‘x’ assume_tac) >> sg ‘~(y < 0)’ >- cooper_tac >> fs [] >> sg ‘0 <= x % y’ >- (irule pos_mod_pos_is_pos >> cooper_tac) >> sg ‘0 <= x / y’ >- (irule pos_div_pos_is_pos >> cooper_tac) >> sg ‘0 <= (x / y) * y’ >- (irule pos_mul_pos_is_pos >> cooper_tac) >> cooper_tac QED Theorem pos_mod_pos_lt: ∀ x y. 0 ≤ x ⇒ 0 < y ⇒ x % y < y Proof rw [] >> qspecl_assume [‘x’, ‘y’] integerTheory.INT_MOD_BOUNDS >> sg ‘y ≠ 0 ∧ ~(y < 0)’ >- int_tac >> fs [] QED Theorem pos_mod_pos_ineqs: ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x % y ∧ x % y < y Proof metis_tac [pos_mod_pos_is_pos, pos_mod_pos_lt] QED Theorem mul_pos_left_le: ∀ (a x y : int). 0 ≤ a ⇒ x ≤ y ⇒ a * x ≤ a * y Proof rw [] >> Cases_on ‘a = 0’ >> fs [] >> sg ‘0 < a’ >- cooper_tac >> metis_tac [integerTheory.INT_LE_MONO] QED Theorem mul_pos_right_le: ∀ (a x y : int). 0 ≤ a ⇒ x ≤ y ⇒ x * a ≤ y * a Proof rw [mul_pos_left_le, integerTheory.INT_MUL_COMM] QED Theorem mul_pos_left_lt: ∀ (a x y : int). 0 < a ⇒ x < y ⇒ a * x < a * y Proof metis_tac [integerTheory.INT_LT_MONO] QED Theorem mul_pos_right_lt: ∀ (a x y : int). 0 < a ⇒ x < y ⇒ x * a < y * a Proof metis_tac [mul_pos_left_lt, integerTheory.INT_MUL_COMM] QED Theorem pos_mul_left_pos_le: ∀ a x. 0 < a ⇒ 0 ≤ x ⇒ x ≤ a * x Proof rw [] >> Cases_on ‘a = 1’ >> fs [] >> sg ‘0 ≤ (a - 1) * x’ >- (irule pos_mul_pos_is_pos >> int_tac) >> sg ‘x ≤ x + (a - 1) * x’ >- fs [] >> sg ‘a * x = 1 * x + (a - 1) * x’ >- fs [GSYM integerTheory.INT_RDISTRIB] >> fs [] QED Theorem pos_mul_right_pos_le: ∀ a x. 0 < a ⇒ 0 ≤ x ⇒ x ≤ x * a Proof metis_tac [pos_mul_left_pos_le, integerTheory.INT_MUL_COMM] QED Theorem pos_mul_left_pos_lt: ∀ a x. 1 < a ⇒ 0 < x ⇒ x < a * x Proof rw [] >> sg ‘a * x = 1 * x + (a - 1) * x’ >- (fs [GSYM integerTheory.INT_RDISTRIB]) >> fs [] >> sg ‘(a − 1) * x = 1 * x + (a - 2) * x’ >- ( fs [GSYM integerTheory.INT_RDISTRIB] >> sg ‘1 + (a − 2) = a - 1’ >- int_tac >> fs [] ) >> fs [] >> sg ‘0 ≤ (a − 2) * x’ >- (irule pos_mul_pos_is_pos >> int_tac) >> int_tac QED Theorem pos_mul_right_pos_lt: ∀ a x. 1 < a ⇒ 0 < x ⇒ x < x * a Proof metis_tac [pos_mul_left_pos_lt, integerTheory.INT_MUL_COMM] QED Theorem pos_div_pos_mul_le: ∀ x y. 0 ≤ x ⇒ 0 < y ⇒ (x / y) * y ≤ x Proof rw [] >> qspec_assume ‘y’ integerTheory.INT_DIVISION >> sg ‘y ≠ 0 ∧ ~(y < 0)’ >- int_tac >> fs [] >> first_x_assum (qspec_assume ‘x’) >> fs [] >> (* TODO: int_tac loops here *) cooper_tac QED Theorem pos_mul_pos_div_pos_decompose: ∀ x y z. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 < z ⇒ x / z + y / z ≤ (x + y) / z Proof rw [] >> sg ‘z ≠ 0’ >- int_tac >> sg ‘(x / z * z + x % z) + (y / z * z + y % z) = (x + y) / z * z + (x + y) % z’ >- metis_tac [integerTheory.INT_DIVISION] >> sg ‘(x + y) % z = ((x % z) + (y % z)) % z’ >- metis_tac [integerTheory.INT_MOD_PLUS] >> sg ‘0 ≤ (x % z) ∧ 0 ≤ (y % z)’ >- metis_tac [pos_mod_pos_is_pos] >> sg ‘0 ≤ (x % z) + (y % z)’ >- int_tac >> sg ‘((x % z) + (y % z)) % z ≤ (x % z) + (y % z)’ >- metis_tac [pos_mod_pos_le_init] >> sg ‘x / z * z + y / z * z ≤ (x + y) / z * z’ >- int_tac >> sg ‘x / z * z + y / z * z = (x / z + y / z) * z’ >- fs [integerTheory.INT_RDISTRIB] >> fs [] >> sg ‘0 ≤ x / z’ >- (irule pos_div_pos_is_pos >> fs []) >> sg ‘0 ≤ y / z’ >- (irule pos_div_pos_is_pos >> fs []) >> sg ‘0 ≤ (x + y) / z’ >- (irule pos_div_pos_is_pos >> fs []) >> sg ‘(x / z + y / z) * z / z ≤ (x + y) / z * z / z’ >- ( irule pos_div_pos_le >> fs [] >> rw [] >> irule pos_mul_pos_is_pos >> fs []) >> imp_res_tac integerTheory.INT_DIV_RMUL >> metis_tac [] QED Theorem pos_mul_2_div_pos_decompose: ∀ x y. 0 ≤ x ⇒ 0 < y ⇒ x / y + x / y ≤ x * 2 / y Proof rw [] >> qspecl_assume [‘x’, ‘x’, ‘y’] pos_mul_pos_div_pos_decompose >> gvs [] >> sg ‘x * 2 = (x * 1) + (x * 1)’ >- (pure_rewrite_tac [GSYM integerTheory.INT_LDISTRIB] >> fs []) >> fs [] QED val _ = export_theory ()