signature ilistTheory = sig type thm = Thm.thm (* Definitions *) val index_def : thm val len_def : thm val update_def : thm (* Theorems *) val append_len_eq : thm val index_eq_EL : thm val len_append : thm val len_eq_LENGTH : thm val ilist_grammars : type_grammar.grammar * term_grammar.grammar (* [primitivesArith] Parent theory of "ilist" [string] Parent theory of "ilist" [index_def] Definition ⊢ (∀i. index i [] = EL (Num i) []) ∧ ∀i x ls. index i (x::ls) = if i = 0 then x else if 0 < i then index (i − 1) ls else ARB [len_def] Definition ⊢ len [] = 0 ∧ ∀x ls. len (x::ls) = 1 + len ls [update_def] Definition ⊢ (∀i y. update [] i y = []) ∧ ∀x ls i y. update (x::ls) i y = if i = 0 then y::ls else if 0 < i then x::update ls (i − 1) y else x::ls [append_len_eq] Theorem ⊢ (∀l1 l2 l1' l2'. len l1 = len l1' ⇒ (l1 ⧺ l2 = l1' ⧺ l2' ⇔ l1 = l1' ∧ l2 = l2')) ∧ ∀l1 l2 l1' l2'. len l2 = len l2' ⇒ (l1 ⧺ l2 = l1' ⧺ l2' ⇔ l1 = l1' ∧ l2 = l2') [index_eq_EL] Theorem ⊢ ∀i ls. 0 ≤ i ⇒ i < len ls ⇒ index i ls = EL (Num i) ls [len_append] Theorem ⊢ ∀l1 l2. len (l1 ⧺ l2) = len l1 + len l2 [len_eq_LENGTH] Theorem ⊢ ∀ls. len ls = &LENGTH ls *) end