(* This file introduces a fixed-point operator to define potentially diverging functions so that the user doesn't have to prove termination at *definition time* but can prove it in an extrinsic manner. See divDefLib for a library which uses this fixed-point operator in an automated manner, and divDefExampleScript for hand-written and well commented examples of how to use it. *) open primitivesArithTheory primitivesBaseTacLib primitivesTheory primitivesLib val _ = new_theory "divDef" (*====================== * Fixed-point operator *======================*) (* An auxiliary operator which uses some fuel *) Definition fix_fuel_def: (fix_fuel (0 : num) (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = Diverge) ∧ (fix_fuel (SUC n) (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = f (fix_fuel n f) x) End (* An auxiliary predicate *) Definition fix_fuel_P_def: fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x)) End (* The fixed point operator *) Definition fix_def: fix (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge End (* An "executable" fixed point operator - useful for unit tests: we first test if ‘fix_fuel_P f x’ is true for a high quantity of fuel, otherwise we use ‘fix’ (which is not executable). We prove later that, under some constraints: ‘∀n. fix_nexec n f = fix f’ *) Definition fix_nexec_def: fix_nexec (n : num) (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = if (fix_fuel_P f x n) then fix_fuel n f x else fix f x End (* We fix a quantity of fuel for ’fix_nexec *) Definition fix_exec_def: fix_exec = fix_nexec 1000000 End (* A validity condition. If a function body ‘f’ satisfies this condition, then we have the fixed point equation ‘fix f = f (fix f)’ (see [fix_fixed_eq]). *) Definition is_valid_fp_body_def: (is_valid_fp_body (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) = F) ∧ (is_valid_fp_body (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) = ∀x. (∀g h. f g x = f h x) ∨ (∃ h y. is_valid_fp_body n h ∧ ∀g. f g x = do z <- g y; h g z od)) End (*=====================================* * Lemmas about ‘fix_fuel’ and ‘fix’ *=====================================*) (* Auxiliary lemma. We generalize the goal of [fix_fuel_mono] in the case the fuel is non-empty (this allows us to unfold definitions like ‘fix_fuel’ once, and reveal a first intermediate function). Important: the structure of the proof is induction over ‘n’ then ‘N’. *) Theorem fix_fuel_mono_aux: ∀n. ∀N M g f. is_valid_fp_body M f ⇒ is_valid_fp_body N g ⇒ ∀x. ~(is_diverge (g (fix_fuel n f) x)) ⇒ ∀m. n ≤ m ⇒ g (fix_fuel n f) x = g (fix_fuel m f) x Proof Induct_on ‘n’ >> Induct_on ‘N’ >- fs [is_valid_fp_body_def] >-( rw [] >> fs [is_valid_fp_body_def, is_diverge_def] >> first_x_assum (qspec_assume ‘x’) >> rw [] >-((* Case 1: the continuation doesn't matter *) fs []) >> (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) (* Instantiate the validity property with the different continuations *) first_assum (qspec_assume ‘fix_fuel n f’) >> first_assum (qspec_assume ‘fix_fuel n' f’) >> fs [] >> ntac 3 (pop_assum ignore_tac) >> fs [bind_def] >> fs [fix_fuel_def]) >-(fs [is_valid_fp_body_def]) >> rw [] >> qpat_assum ‘is_valid_fp_body (SUC N) g’ mp_tac >> pure_rewrite_tac [is_valid_fp_body_def] >> fs [is_diverge_def] >> rw [] >> first_x_assum (qspec_assume ‘x’) >> rw [] >-((* Case 1: the continuation doesn't matter *) fs []) >> (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) (* Use the validity property with the different continuations *) fs [] >> pop_assum ignore_tac >> fs [bind_def, fix_fuel_def] >> Cases_on ‘m’ >- int_tac >> fs [fix_fuel_def] >> (* *) last_x_assum (qspecl_assume [‘M’, ‘M’, ‘f’, ‘f’]) >> gvs [] >> first_x_assum (qspec_assume ‘y’) >> Cases_on ‘f (fix_fuel n f) y’ >> fs [] >> first_x_assum (qspec_assume ‘n'’) >> gvs [] >> Cases_on ‘f (fix_fuel n' f) y’ >> fs [] >> (* *) first_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >> gvs [] QED (* ‘fix_fuel’ is monotonous over the fuel *) Theorem fix_fuel_mono: ∀N f. is_valid_fp_body N f ⇒ ∀n x. fix_fuel_P f x n ⇒ ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x Proof rw [] >> Cases_on ‘n’ >-(fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> fs [fix_fuel_P_def, fix_fuel_def] >> rw [] >> qspecl_assume [‘n'’, ‘N’, ‘N’, ‘f’, ‘f’] fix_fuel_mono_aux >> Cases_on ‘m’ >- fs [] >> gvs [fix_fuel_def] QED Theorem fix_fuel_mono_least: ∀N f. is_valid_fp_body N f ⇒ ∀n x. fix_fuel_P f x n ⇒ fix_fuel n f x = fix_fuel ($LEAST (fix_fuel_P f x)) f x Proof rw [] >> pure_once_rewrite_tac [EQ_SYM_EQ] >> irule fix_fuel_mono >> fs [] >> (* Use the "fundamental" property about $LEAST *) qspec_assume ‘fix_fuel_P f x’ whileTheory.LEAST_EXISTS_IMP >> (* Prove the premise *) pop_assum sg_premise_tac >- metis_tac [] >> fs [] >> conj_tac >- (spose_not_then assume_tac >> fs [not_le_eq_gt]) >> metis_tac [] QED Theorem fix_fuel_eq_fix: ∀N f. is_valid_fp_body N f ⇒ ∀n x. fix_fuel_P f x n ⇒ fix_fuel n f x = fix f x Proof fs [fix_def] >> rw [] >> imp_res_tac fix_fuel_mono_least >> fs [fix_fuel_P_def, is_diverge_def] >> case_tac >> fs [] QED Theorem fix_fuel_P_least: ∀f n x. fix_fuel n f x ≠ Diverge ⇒ fix_fuel_P f x ($LEAST (fix_fuel_P f x)) Proof rw [] >> qspec_assume ‘fix_fuel_P f x’ whileTheory.LEAST_EXISTS_IMP >> (* Prove the premise *) pop_assum sg_premise_tac >-(fs [fix_fuel_P_def, is_diverge_def] >> qexists ‘n’ >> fs [] >> case_tac >> fs []) >> rw [] QED (* If ‘g (fix f) x’ doesn't diverge, we can write it in terms of ‘g (fix_fuel n f)’ for some fuel ‘n’. This is an auxiliary lemma used to prove [fix_not_diverge_implies_fix_fuel] *) Theorem fix_not_diverge_implies_fix_fuel_aux: ∀N M g f. is_valid_fp_body M f ⇒ is_valid_fp_body N g ⇒ ∀x. g (fix f) x ≠ Diverge ⇒ ∃n. g (fix f) x = g (fix_fuel n f) x ∧ ∀m. n ≤ m ⇒ g (fix_fuel m f) x = g (fix_fuel n f) x Proof Induct_on ‘N’ >-(fs [is_valid_fp_body_def]) >> rw [is_valid_fp_body_def] >> first_x_assum (qspec_assume ‘x’) >> rw [] >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >> (* Use the validity hypothesis *) fs [] >> pop_assum ignore_tac >> (* Use the induction hypothesis *) last_x_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >> gvs [] >> (* Case disjunction on ‘fix f ÿ’*) Cases_on ‘fix f y’ >> fs [bind_def] >~ [‘fix f y = Fail _’] >-( (* Fail case: easy, the call to ‘h’ is ignored *) fs [fix_def] >> pop_assum mp_tac >> rw [] >> qexists ‘$LEAST (fix_fuel_P f y)’ >> fs [] >> (* Use the monotonicity property for ‘f’ *) rw [] >> qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> first_x_assum (qspecl_assume [‘m’]) >> gvs [] >> first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] ) >> (* Return case: we must take the maximum of the fuel for ‘f’ and ‘h’, and use the monotonicity property *) fs [fix_def] >> pop_assum mp_tac >> rw [] >> first_x_assum (qspec_assume ‘a’) >> gvs [] >> qexists ‘MAX ($LEAST (fix_fuel_P f y)) n'’ >> fs [] >> (* Use the monotonicity properties *) (* Instantiate the Monotonicity property for ‘f’ (the induction hypothesis gives the one for ‘h’) *) qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs [] >> first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] >> (* Prove the monotonicity property for ‘do z <- fix f y; h (fix f) z’ *) rw [] >> (* First, one of the ‘fix_fuel ... f y’ doesn't use the proper fuel *) sg ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y = Return a’ >-( qspecl_assume [‘f’, ‘MAX ($LEAST (fix_fuel_P f y)) n'’, ‘y’] fix_fuel_P_least >> gvs [fix_fuel_P_def, is_diverge_def] >> Cases_on ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y’ >> fs [] >> (* Use the monotonicity property - there are two goals here *) qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs []) >> (* Instantiate the monotonicity property for ‘f’ *) qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> gvs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> first_x_assum (qspecl_assume [‘m’]) >> gvs [] >> first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] QED (* If ‘g (fix f) x’ doesn't diverge, we can write it in terms of ‘g (fix_fuel n f)’ for some fuel ‘n’. *) Theorem fix_not_diverge_implies_fix_fuel: ∀N f. is_valid_fp_body N f ⇒ ∀x. f (fix f) x ≠ Diverge ⇒ ∃n. f (fix f) x = f (fix_fuel n f) x Proof metis_tac [fix_not_diverge_implies_fix_fuel_aux] QED (* ‘fix’ satisfies the fixed point equation in case the evaluation diverges *) Theorem fix_fixed_diverges: ∀N f. is_valid_fp_body N f ⇒ ∀x. ~(∃ n. fix_fuel_P f x n) ⇒ fix f x = f (fix f) x Proof (* We do the proof by contraposition: if ‘f (fix f) x’ doesn't diverge, we can exhibit some fuel (lemma [fix_not_diverge_implies_fix_fuel]) *) rw [fix_def] >> imp_res_tac fix_not_diverge_implies_fix_fuel >> pop_assum (qspec_assume ‘x’) >> fs [fix_fuel_P_def, is_diverge_def] >> (* Case analysis: we have to prove that the ‘Return’ and ‘Fail’ cases lead to a contradiction *) Cases_on ‘f (fix f) x’ >> gvs [] >> first_x_assum (qspec_assume ‘SUC n’) >> fs [fix_fuel_def] >> pop_assum mp_tac >> case_tac >> fs [] QED (* If ‘g (fix_fuel n f) x’ doesn't diverge, then it is equal to ‘g (fix f) x’ *) Theorem fix_fuel_not_diverge_eq_fix_aux: ∀N M g f. is_valid_fp_body M f ⇒ is_valid_fp_body N g ⇒ ∀n x. g (fix_fuel n f) x ≠ Diverge ⇒ g (fix f) x = g (fix_fuel n f) x Proof Induct_on ‘N’ >-(fs [is_valid_fp_body_def]) >> rw [is_valid_fp_body_def] >> first_x_assum (qspec_assume ‘x’) >> rw [] >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >> (* Use the validity hypothesis *) fs [] >> pop_assum ignore_tac >> (* For ‘fix f y = fix_fuel n f y’: use the monotonicity property *) sg ‘fix_fuel_P f y n’ >-(Cases_on ‘fix_fuel n f y’ >> fs [fix_fuel_P_def, is_diverge_def, bind_def]) >> sg ‘fix f y = fix_fuel n f y’ >-(metis_tac [fix_fuel_eq_fix])>> (* Case disjunction on the call to ‘f’ *) Cases_on ‘fix_fuel n f y’ >> gvs [bind_def] >> (* We have to prove that: ‘h (fix f) a = h (fix_fuel n f) a’: use the induction hypothesis *) metis_tac [] QED Theorem fix_fuel_not_diverge_eq_fix: ∀N f. is_valid_fp_body N f ⇒ ∀n x. f (fix_fuel n f) x ≠ Diverge ⇒ f (fix f) x = f (fix_fuel n f) x Proof metis_tac [fix_fuel_not_diverge_eq_fix_aux] QED (* ‘fix’ satisfies the fixed point equation in case the evaluation terminates *) Theorem fix_fixed_terminates: ∀N f. is_valid_fp_body N f ⇒ ∀x n. fix_fuel_P f x n ⇒ fix f x = f (fix f) x Proof (* The proof simply uses the lemma [fix_fuel_not_diverge_eq_fix] *) rw [fix_fuel_P_def, is_diverge_def, fix_def] >> case_tac >> fs [] >> (* We can prove that ‘fix_fuel ($LEAST ...) f x ≠ Diverge’ *) qspecl_assume [‘f’, ‘n’, ‘x’] fix_fuel_P_least >> pop_assum sg_premise_tac >-(Cases_on ‘fix_fuel n f x’ >> fs []) >> fs [fix_fuel_P_def, is_diverge_def] >> (* *) Cases_on ‘($LEAST (fix_fuel_P f x))’ >> fs [fix_fuel_def] >> irule (GSYM fix_fuel_not_diverge_eq_fix) >> Cases_on ‘f (fix_fuel n'' f) x’ >> fs [] >> metis_tac [] QED (* The final fixed point equation *) Theorem fix_fixed_eq: ∀N f. is_valid_fp_body N f ⇒ ∀x. fix f x = f (fix f) x Proof rw [] >> Cases_on ‘∃n. fix_fuel_P f x n’ >- (irule fix_fixed_terminates >> metis_tac []) >> irule fix_fixed_diverges >> metis_tac [] QED (*=============================== * Lemmas about ‘fix_exec’ *===============================*) (* Prove that ‘fix_nexec’ is equivalent to ‘fix’ *) Theorem fix_nexec_eq_fix: ∀ N f n. is_valid_fp_body N f ⇒ fix_nexec n f = fix f Proof rw [] >> rpt (irule EQ_EXT >> gen_tac) >> fs [fix_nexec_def, fix_def] >> top_case_tac >> case_tac >> fs [] >> (* Use the properties of the least upper bound *) qspec_assume ‘fix_fuel_P f x’ whileTheory.LEAST_EXISTS_IMP >> pop_assum sg_premise_tac >- metis_tac [] >> fs [] >> (* Use the monotonicity property *) irule fix_fuel_mono_least >> metis_tac [] QED (* Prove the fixed point property for ‘fix_exec’ *) Theorem fix_exec_fixed_eq: ∀N f. is_valid_fp_body N f ⇒ ∀x. fix_exec f x = f (fix_exec f) x Proof rw [fix_exec_def] >> imp_res_tac fix_nexec_eq_fix >> fs [] >> irule fix_fixed_eq >> fs [] >> metis_tac [] QED (*=============================== * Utilities for the automation *===============================*) (* This theorem is important to shape the goal when proving that a body satifies the fixed point validity property. Important: this theorem (and its usafe) relies on the fact that errors are just transmitted to the caller (in particular, without modification). *) Theorem case_result_switch_eq: (case (case x of Return y => f y | Fail e => Fail e | Diverge => Diverge) of | Return y => g y | Fail e => Fail e | Diverge => Diverge) = (case x of | Return y => (case f y of | Return y => g y | Fail e => Fail e | Diverge => Diverge) | Fail e => Fail e | Diverge => Diverge) Proof Cases_on ‘x’ >> fs [] QED val _ = export_theory ()