signature divDefProtoTheory = sig type thm = Thm.thm (* Definitions *) val fix_def : thm val fix_fuel_P_def : thm val fix_fuel_def : thm val is_valid_fp_body_def : thm val list_t_TY_DEF : thm val list_t_case_def : thm val list_t_size_def : thm val nth_body_def : thm (* Theorems *) val datatype_list_t : thm val fix_fixed_diverges : thm val fix_fixed_eq : thm val fix_fixed_terminates : thm val fix_fixed_termination_rec_case : thm val fix_fuel_compute : thm val fix_fuel_mono : thm val fix_fuel_mono_least : thm val is_valid_suffice : thm val list_t_11 : thm val list_t_Axiom : thm val list_t_case_cong : thm val list_t_case_eq : thm val list_t_distinct : thm val list_t_induction : thm val list_t_nchotomy : thm val nth_body_is_valid : thm val nth_def : thm val divDefProto_grammars : type_grammar.grammar * term_grammar.grammar (* [primitives] Parent theory of "divDefProto" [fix_def] Definition ⊢ ∀f x. fix f x = if ∃n. fix_fuel_P f x n then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge [fix_fuel_P_def] Definition ⊢ ∀f x n. fix_fuel_P f x n ⇔ ¬is_diverge (fix_fuel n f x) [fix_fuel_def] Definition ⊢ (∀f x. fix_fuel 0 f x = Diverge) ∧ ∀n f x. fix_fuel (SUC n) f x = f (fix_fuel n f) x [is_valid_fp_body_def] Definition ⊢ ∀f. is_valid_fp_body f ⇔ ∀x. (∀g h. f g x = f h x) ∨ ∃y. ∀g. f g x = g y [list_t_TY_DEF] Definition ⊢ ∃rep. TYPE_DEFINITION (λa0'. ∀ $var$('list_t'). (∀a0'. (∃a0 a1. a0' = (λa0 a1. ind_type$CONSTR 0 a0 (ind_type$FCONS a1 (λn. ind_type$BOTTOM))) a0 a1 ∧ $var$('list_t') a1) ∨ a0' = ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒ $var$('list_t') a0') ⇒ $var$('list_t') a0') rep [list_t_case_def] Definition ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧ ∀f v. list_t_CASE ListNil f v = v [list_t_size_def] Definition ⊢ (∀f a0 a1. list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧ ∀f. list_t_size f ListNil = 0 [nth_body_def] Definition ⊢ ∀f x. nth_body f x = (let (ls,i) = x in case ls of ListCons x tl => if u32_to_int i = 0 then Return x else do i0 <- u32_sub i (int_to_u32 1); f (tl,i0) od | ListNil => Fail Failure) [datatype_list_t] Theorem ⊢ DATATYPE (list_t ListCons ListNil) [fix_fixed_diverges] Theorem ⊢ ∀f. is_valid_fp_body f ⇒ ∀x. ¬(∃n. fix_fuel_P f x n) ⇒ fix f x = f (fix f) x [fix_fixed_eq] Theorem ⊢ ∀f. is_valid_fp_body f ⇒ ∀x. fix f x = f (fix f) x [fix_fixed_terminates] Theorem ⊢ ∀f. is_valid_fp_body f ⇒ ∀x n. fix_fuel_P f x n ⇒ fix f x = f (fix f) x [fix_fixed_termination_rec_case] Theorem ⊢ ∀x y n m. is_valid_fp_body f ⇒ (∀g. f g x = g y) ⇒ fix_fuel_P f x n ⇒ fix_fuel_P f y m ⇒ fix_fuel ($LEAST (fix_fuel_P f x)) f x = fix_fuel ($LEAST (fix_fuel_P f y)) f y [fix_fuel_compute] Theorem ⊢ (∀f x. fix_fuel 0 f x = Diverge) ∧ (∀n f x. fix_fuel (NUMERAL (BIT1 n)) f x = f (fix_fuel (NUMERAL (BIT1 n) − 1) f) x) ∧ ∀n f x. fix_fuel (NUMERAL (BIT2 n)) f x = f (fix_fuel (NUMERAL (BIT1 n)) f) x [fix_fuel_mono] Theorem ⊢ ∀f. is_valid_fp_body f ⇒ ∀n x. fix_fuel_P f x n ⇒ ∀m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x [fix_fuel_mono_least] Theorem ⊢ ∀f. is_valid_fp_body f ⇒ ∀n x. fix_fuel_P f x n ⇒ fix_fuel n f x = fix_fuel ($LEAST (fix_fuel_P f x)) f x [is_valid_suffice] Theorem ⊢ ∃y. ∀g. g x = g y [list_t_11] Theorem ⊢ ∀a0 a1 a0' a1'. ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1' [list_t_Axiom] Theorem ⊢ ∀f0 f1. ∃fn. (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧ fn ListNil = f1 [list_t_case_cong] Theorem ⊢ ∀M M' f v. M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧ (M' = ListNil ⇒ v = v') ⇒ list_t_CASE M f v = list_t_CASE M' f' v' [list_t_case_eq] Theorem ⊢ list_t_CASE x f v = v' ⇔ (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v' [list_t_distinct] Theorem ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil [list_t_induction] Theorem ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l [list_t_nchotomy] Theorem ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil [nth_body_is_valid] Theorem ⊢ is_valid_fp_body nth_body [nth_def] Theorem ⊢ ∀ls i. nth ls i = case ls of ListCons x tl => if u32_to_int i = 0 then Return x else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od | ListNil => Fail Failure *) end