(* Prototype: divDefLib but with general combinators *) open HolKernel boolLib bossLib Parse open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory open primitivesLib val _ = new_theory "divDefProto2" (* * Test with a general validity predicate. * * TODO: this works! Cleanup. *) val fix_fuel_def = Define ‘ (fix_fuel (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = Diverge) ∧ (fix_fuel (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = f (fix_fuel n f) x) ’ val fix_fuel_P_def = Define ‘ fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x)) ’ val fix_def = Define ‘ fix (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge ’ val is_valid_fp_body_def = Define ‘ (is_valid_fp_body (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) = F) ∧ (is_valid_fp_body (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) = ∀x. (∀g h. f g x = f h x) ∨ (∃ h y. is_valid_fp_body n h ∧ ∀g. f g x = do z <- g y; h g z od)) ’ (* Auxiliary lemma. We generalize the goal of fix_fuel_mono in the case the fuel is non-empty (this allows us to unfold definitions like ‘fix_fuel’ once, and reveal a first intermediate function). Important: the structure of the proof is induction over ‘n’ then ‘N’. *) Theorem fix_fuel_mono_aux: ∀n. ∀N M g f. is_valid_fp_body M f ⇒ is_valid_fp_body N g ⇒ ∀x. ~(is_diverge (g (fix_fuel n f) x)) ⇒ ∀m. n ≤ m ⇒ g (fix_fuel n f) x = g (fix_fuel m f) x Proof Induct_on ‘n’ >> Induct_on ‘N’ >- fs [is_valid_fp_body_def] >-( rw [] >> fs [is_valid_fp_body_def, is_diverge_def] >> first_x_assum (qspec_assume ‘x’) >> rw [] >-((* Case 1: the continuation doesn't matter *) fs []) >> (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) (* Instantiate the validity property with the different continuations *) first_assum (qspec_assume ‘fix_fuel n f’) >> first_assum (qspec_assume ‘fix_fuel n' f’) >> fs [] >> ntac 3 (pop_assum ignore_tac) >> fs [bind_def] >> fs [fix_fuel_def]) >-(fs [is_valid_fp_body_def]) >> rw [] >> qpat_assum ‘is_valid_fp_body (SUC N) g’ mp_tac >> pure_rewrite_tac [is_valid_fp_body_def] >> fs [is_diverge_def] >> rw [] >> first_x_assum (qspec_assume ‘x’) >> rw [] >-((* Case 1: the continuation doesn't matter *) fs []) >> (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) (* Use the validity property with the different continuations *) fs [] >> pop_assum ignore_tac >> fs [bind_def, fix_fuel_def] >> Cases_on ‘m’ >- int_tac >> fs [fix_fuel_def] >> (* *) last_x_assum (qspecl_assume [‘M’, ‘M’, ‘f’, ‘f’]) >> gvs [] >> first_x_assum (qspec_assume ‘y’) >> Cases_on ‘f (fix_fuel n f) y’ >> fs [] >> first_x_assum (qspec_assume ‘n'’) >> gvs [] >> Cases_on ‘f (fix_fuel n' f) y’ >> fs [] >> (* *) first_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >> gvs [] QED Theorem fix_fuel_mono: ∀N f. is_valid_fp_body N f ⇒ ∀n x. fix_fuel_P f x n ⇒ ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x Proof rw [] >> Cases_on ‘n’ >-(fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> fs [fix_fuel_P_def, fix_fuel_def] >> rw [] >> qspecl_assume [‘n'’, ‘N’, ‘N’, ‘f’, ‘f’] fix_fuel_mono_aux >> Cases_on ‘m’ >- fs [] >> gvs [fix_fuel_def] QED (* TODO: remove? *) Theorem fix_fuel_mono_least: ∀N f. is_valid_fp_body N f ⇒ ∀n x. fix_fuel_P f x n ⇒ fix_fuel n f x = fix_fuel ($LEAST (fix_fuel_P f x)) f x Proof rw [] >> pure_once_rewrite_tac [EQ_SYM_EQ] >> irule fix_fuel_mono >> fs [] >> (* Use the "fundamental" property about $LEAST *) qspec_assume ‘fix_fuel_P f x’ whileTheory.LEAST_EXISTS_IMP >> (* Prove the premise *) pop_assum sg_premise_tac >- metis_tac [] >> fs [] >> conj_tac >- (spose_not_then assume_tac >> fs [not_le_eq_gt]) >> metis_tac [] QED Theorem fix_fuel_eq_fix: ∀N f. is_valid_fp_body N f ⇒ ∀n x. fix_fuel_P f x n ⇒ fix_fuel n f x = fix f x Proof fs [fix_def] >> rw [] >> imp_res_tac fix_fuel_mono_least >> fs [fix_fuel_P_def, is_diverge_def] >> case_tac >> fs [] QED Theorem fix_fuel_P_least: ∀f n x. fix_fuel n f x ≠ Diverge ⇒ fix_fuel_P f x ($LEAST (fix_fuel_P f x)) Proof rw [] >> qspec_assume ‘fix_fuel_P f x’ whileTheory.LEAST_EXISTS_IMP >> (* Prove the premise *) pop_assum sg_premise_tac >-(fs [fix_fuel_P_def, is_diverge_def] >> qexists ‘n’ >> fs [] >> case_tac >> fs []) >> rw [] QED (* If ‘g (fix f) x’ doesn't diverge, we can exhibit some fuel *) Theorem fix_not_diverge_implies_fix_fuel_aux: ∀N M g f. is_valid_fp_body M f ⇒ is_valid_fp_body N g ⇒ ∀x. g (fix f) x ≠ Diverge ⇒ ∃n. g (fix f) x = g (fix_fuel n f) x ∧ ∀m. n ≤ m ⇒ g (fix_fuel m f) x = g (fix_fuel n f) x Proof Induct_on ‘N’ >-(fs [is_valid_fp_body_def]) >> rw [is_valid_fp_body_def] >> first_x_assum (qspec_assume ‘x’) >> rw [] >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >> (* Use the validity hypothesis *) fs [] >> pop_assum ignore_tac >> (* Use the induction hypothesis *) last_x_assum (qspecl_assume [‘M’, ‘h’, ‘f’]) >> gvs [] >> (* Case disjunction on ‘fix f ÿ’*) Cases_on ‘fix f y’ >> fs [bind_def] >~ [‘fix f y = Fail _’] >-( (* Fail case: easy, the call to ‘h’ is ignored *) fs [fix_def] >> pop_assum mp_tac >> rw [] >> qexists ‘$LEAST (fix_fuel_P f y)’ >> fs [] >> (* Use the monotonicity property for ‘f’ *) rw [] >> qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> first_x_assum (qspecl_assume [‘m’]) >> gvs [] >> first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] ) >> (* Return case: we must take the maximum of the fuel for ‘f’ and ‘h’, and use the monotonicity property *) fs [fix_def] >> pop_assum mp_tac >> rw [] >> first_x_assum (qspec_assume ‘a’) >> gvs [] >> qexists ‘MAX ($LEAST (fix_fuel_P f y)) n'’ >> fs [] >> (* Use the monotonicity properties *) (* Instantiate the Monotonicity property for ‘f’ (the induction hypothesis gives the one for ‘h’) *) qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs [] >> first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] >> (* Prove the monotonicity property for ‘do z <- fix f y; h (fix f) z’ *) rw [] >> (* First, one of the ‘fix_fuel ... f y’ doesn't use the proper fuel *) sg ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y = Return a’ >-( qspecl_assume [‘f’, ‘MAX ($LEAST (fix_fuel_P f y)) n'’, ‘y’] fix_fuel_P_least >> gvs [fix_fuel_P_def, is_diverge_def] >> Cases_on ‘fix_fuel ($LEAST (fix_fuel_P f y)) f y’ >> fs [] >> (* Use the monotonicity property - there are two goals here *) qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> fs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> first_x_assum (qspecl_assume [‘MAX ($LEAST (fix_fuel_P f y)) n'’]) >> gvs []) >> (* Instantiate the monotonicity property for ‘f’ *) qspecl_assume [‘M’, ‘f’] fix_fuel_mono >> gvs [] >> first_x_assum (qspecl_assume [‘$LEAST (fix_fuel_P f y)’, ‘y’]) >> gvs [] >> gvs [fix_fuel_P_def, is_diverge_def] >> gvs [] >> first_x_assum (qspecl_assume [‘m’]) >> gvs [] >> first_x_assum (fn th => assume_tac (GSYM th)) >> fs [] QED (* If ‘g (fix f) x’ doesn't diverge, we can exhibit some fuel *) Theorem fix_not_diverge_implies_fix_fuel: ∀N f. is_valid_fp_body N f ⇒ ∀x. f (fix f) x ≠ Diverge ⇒ ∃n. f (fix f) x = f (fix_fuel n f) x Proof metis_tac [fix_not_diverge_implies_fix_fuel_aux] QED Theorem fix_fixed_diverges: ∀N f. is_valid_fp_body N f ⇒ ∀x. ~(∃ n. fix_fuel_P f x n) ⇒ fix f x = f (fix f) x Proof (* We do the proof by contraposition: if ‘f (fix f) x’ doesn't diverge, we can exhibit some fuel (lemma [fix_not_diverge_implies_fix_fuel]) *) rw [fix_def] >> imp_res_tac fix_not_diverge_implies_fix_fuel >> pop_assum (qspec_assume ‘x’) >> fs [fix_fuel_P_def, is_diverge_def] >> (* Case analysis: we have to prove that the ‘Return’ and ‘Fail’ cases lead to a contradiction *) Cases_on ‘f (fix f) x’ >> gvs [] >> first_x_assum (qspec_assume ‘SUC n’) >> fs [fix_fuel_def] >> pop_assum mp_tac >> case_tac >> fs [] QED (* If ‘g (fix_fuel n f) x’ doesn't diverge, then it is equal to ‘g (fix f) x’ *) Theorem fix_fuel_not_diverge_eq_fix_aux: ∀N M g f. is_valid_fp_body M f ⇒ is_valid_fp_body N g ⇒ ∀n x. g (fix_fuel n f) x ≠ Diverge ⇒ g (fix f) x = g (fix_fuel n f) x Proof Induct_on ‘N’ >-(fs [is_valid_fp_body_def]) >> rw [is_valid_fp_body_def] >> first_x_assum (qspec_assume ‘x’) >> rw [] >-(first_assum (qspecl_assume [‘fix f’, ‘fix_fuel 0 f’]) >> fs []) >> (* Use the validity hypothesis *) fs [] >> pop_assum ignore_tac >> (* For ‘fix f y = fix_fuel n f y’: use the monotonicity property *) sg ‘fix_fuel_P f y n’ >-(Cases_on ‘fix_fuel n f y’ >> fs [fix_fuel_P_def, is_diverge_def, bind_def]) >> sg ‘fix f y = fix_fuel n f y’ >-(metis_tac [fix_fuel_eq_fix])>> (* Case disjunction on the call to ‘f’ *) Cases_on ‘fix_fuel n f y’ >> gvs [bind_def] >> (* We have to prove that: ‘h (fix f) a = h (fix_fuel n f) a’: use the induction hypothesis *) metis_tac [] QED Theorem fix_fuel_not_diverge_eq_fix: ∀N f. is_valid_fp_body N f ⇒ ∀n x. f (fix_fuel n f) x ≠ Diverge ⇒ f (fix f) x = f (fix_fuel n f) x Proof metis_tac [fix_fuel_not_diverge_eq_fix_aux] QED Theorem fix_fixed_terminates: ∀N f. is_valid_fp_body N f ⇒ ∀x n. fix_fuel_P f x n ⇒ fix f x = f (fix f) x Proof (* The proof simply uses the lemma [fix_fuel_not_diverge_eq_fix] *) rw [fix_fuel_P_def, is_diverge_def, fix_def] >> case_tac >> fs [] >> (* We can prove that ‘fix_fuel ($LEAST ...) f x ≠ Diverge’ *) qspecl_assume [‘f’, ‘n’, ‘x’] fix_fuel_P_least >> pop_assum sg_premise_tac >-(Cases_on ‘fix_fuel n f x’ >> fs []) >> fs [fix_fuel_P_def, is_diverge_def] >> (* *) Cases_on ‘($LEAST (fix_fuel_P f x))’ >> fs [fix_fuel_def] >> irule (GSYM fix_fuel_not_diverge_eq_fix) >> Cases_on ‘f (fix_fuel n'' f) x’ >> fs [] >> metis_tac [] QED (* Type ft = ``: 'a -> ('a result + (num # num # 'a))`` val fix_fuel_def = Define ‘ (fix_fuel (0 : num) (fs : ('a ft) list) (i : num) (x : 'a) : 'a result = Diverge) ∧ (fix_fuel (SUC n) fs i x = case EL i fs x of | INL r => r | INR (j, k, y) => case fix_fuel n fs j y of | Fail e => Fail e | Diverge => Diverge | Return z => fix_fuel n fs k z) ’ val fix_fuel_P_def = Define ‘ fix_fuel_P fs i x n = ~(is_diverge (fix_fuel n fs i x)) ’ val fix_def = Define ‘ fix (fs : ('a ft) list) (i : num) (x : 'a) : 'a result = if (∃ n. fix_fuel_P fs i x n) then fix_fuel ($LEAST (fix_fuel_P fs i x)) fs i x else Diverge ’ Theorem fix_fuel_mono: ∀f. is_valid_fp_body f ⇒ ∀n x. fix_fuel_P f x n ⇒ ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x Proof ntac 2 strip_tac >> Induct_on ‘n’ >> rpt strip_tac >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> Cases_on ‘m’ >- int_tac >> fs [] >> fs [is_valid_fp_body_def] >> fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >> (*(* Use the validity property *) last_assum (qspec_assume ‘x’) >> (* TODO: consume? *) *) (*pop_assum ignore_tac >> (* TODO: not sure *) *) Induct_on ‘N’ >- fs [eval_ftree_def] >> rw [] >> rw [eval_ftree_def] >> Cases_on ‘h x’ >> fs [] >> Cases_on ‘y’ >> fs [] >> Cases_on ‘y'’ >> fs [] >> last_assum (qspec_assume ‘q’) >> Cases_on ‘fix_fuel n f q’ >> fs [] >> Cases_on ‘N’ >> fs [eval_ftree_def] >> Cases_on ‘y’ >> fs [] >> Cases_on ‘y'’ >> fs [] >> rw [] >> (* This makes a case disjunction on the validity property *) rw [] >-((* Case 1: the continuation doesn't matter *) fs []) >> (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) (* Instantiate the validity property with the different continuations *) first_assum (qspec_assume ‘fix_fuel n f’) >> first_assum (qspec_assume ‘fix_fuel n' f’) >> last_assum (qspec_assume ‘y’) >> fs [] QED Type ft = ``: ('a -> 'a result) -> 'a -> ('a result + (num # 'a))`` val fix_fuel_def = Define ‘ (fix_fuel (0 : num) (fs : ('a ft) list) (g : 'a -> 'a result) (i : num) (x : 'a) : 'a result = Diverge) ∧ (fix_fuel (SUC n) fs g i x = case EL i fs g x of | INL r => r | INR (j, y) => case g y of | Fail e => Fail e | Diverge => Diverge | Return z => fix_fuel n fs g j z) ’ val fix_fuel_def = Define ‘ (fix_fuel (0 : num) (fs : ('a ft) list) g (i : num) (x : 'a) : 'a result = Diverge) ∧ (fix_fuel (SUC n) fs g i x = case EL i fs x of | INL r => r | INR (j, y) => case g y of | Fail e => Fail e | Diverge => Diverge | Return z => fix_fuel n fs g j z) ’ val fix_fuel_def = Define ‘ (fix_fuel (0 : num) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = Diverge) ∧ (fix_fuel (SUC n) (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = f (fix_fuel n f) x) ’ val fix_fuel_P_def = Define ‘ fix_fuel_P f x n = ~(is_diverge (fix_fuel n f x)) ’ val fix_def = Define ‘ fix (f : ('a -> 'a result) -> 'a -> 'a result) (x : 'a) : 'a result = if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge ’ (*Datatype: ftree = Rec (('a -> ('a result + ('a # num))) # ftree list) | NRec ('a -> 'a result) End Type frtree = ``: ('b -> ('b result + ('a # num))) list`` Type ftree = “: ('a, 'b) frtree # ('b result + ('a # num))” *) val eval_ftree_def = Define ‘ (eval_ftree 0 (g : 'a -> 'a result) (fs : ('a -> ('a result + ('a # num))) list) x = Diverge) ∧ (eval_ftree (SUC n) g fs x = case x of | INL r => r | INR (y, i) => case g y of | Fail e => Fail e | Diverge => Diverge | Return z => let f = EL i fs in eval_ftree n g fs (f z)) ’ Theorem fix_fuel_mono: ∀N fs i. let f = (\g x. eval_ftree N g fs (INR (x, i))) in ∀n x. fix_fuel_P f x n ⇒ ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x Proof Induct_on ‘N’ >-( fs [eval_ftree_def] >> ntac 2 strip_tac >> Induct_on ‘n’ >> rpt strip_tac >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> Cases_on ‘m’ >- int_tac >> fs [] >> fs [is_valid_fp_body_def] >> fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >> val is_valid_fp_body_def = Define ‘ is_valid_fp_body (f : ('a -> 'b result) -> 'a -> 'b result) = (∃N ft. ∀x g. f g x = eval_ftree N g ft (x, i)) ’ val eval_ftree_def = Define ‘ (eval_ftree 0 (g : 'a -> 'b result) (fs : ('b -> ('b result + ('a # num))) list, x : 'b result + ('a # num)) = Diverge) ∧ (eval_ftree (SUC n) g (fs, x) = case x of | INL r => r | INR (y, i) => case g y of | Fail e => Fail e | Diverge => Diverge | Return z => let f = EL i fs in eval_ftree n g (fs, f z)) ’ val is_valid_fp_body_def = Define ‘ is_valid_fp_body (f : ('a -> 'b result) -> 'a -> 'b result) = (∃N ft h. ∀x g. f g x = eval_ftree N g (ft, h x)) ’ Theorem fix_fuel_mono: let f = (\x. eval_ftree N g (ft, h x)) in ∀n x. fix_fuel_P f x n ⇒ ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x Proof Theorem fix_fuel_mono: ∀f. is_valid_fp_body f ⇒ ∀n x. fix_fuel_P f x n ⇒ ∀ m. n ≤ m ⇒ fix_fuel n f x = fix_fuel m f x Proof ntac 2 strip_tac >> Induct_on ‘n’ >> rpt strip_tac >- (fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def]) >> Cases_on ‘m’ >- int_tac >> fs [] >> fs [is_valid_fp_body_def] >> fs [fix_fuel_P_def, is_diverge_def, fix_fuel_def] >> (*(* Use the validity property *) last_assum (qspec_assume ‘x’) >> (* TODO: consume? *) *) (*pop_assum ignore_tac >> (* TODO: not sure *) *) Induct_on ‘N’ >- fs [eval_ftree_def] >> rw [] >> rw [eval_ftree_def] >> Cases_on ‘h x’ >> fs [] >> Cases_on ‘y’ >> fs [] >> Cases_on ‘y'’ >> fs [] >> last_assum (qspec_assume ‘q’) >> Cases_on ‘fix_fuel n f q’ >> fs [] >> Cases_on ‘N’ >> fs [eval_ftree_def] >> Cases_on ‘y’ >> fs [] >> Cases_on ‘y'’ >> fs [] >> rw [] >> (* This makes a case disjunction on the validity property *) rw [] >-((* Case 1: the continuation doesn't matter *) fs []) >> (* Case 2: the continuation *does* matter (i.e., there is a recursive call *) (* Instantiate the validity property with the different continuations *) first_assum (qspec_assume ‘fix_fuel n f’) >> first_assum (qspec_assume ‘fix_fuel n' f’) >> last_assum (qspec_assume ‘y’) >> fs [] QED val length_ftree = “ ( [ (\n. INL (return (1 + n))) ], (case ls of | ListCons x tl => INR (tl, 0) | ListNil => INL (return 0)) ) : ('a list_t, int) ftree ” val eval_length_ftree = mk_icomb (“eval_ftree 1 g”, length_ftree) Theorem length_body_eq: eval_ftree (SUC (SUC 0)) g ( [ (\n. INL (Return (1 + n))) ], (case ls of | ListCons x tl => INR (tl, 0) | ListNil => INL (Return 0)) ) = case ls of | ListCons x tl => do n <- g tl; Return (1 + n) od | ListNil => Return 0 Proof fs [eval_ftree_def, bind_def] >> Cases_on ‘ls’ >> fs [] QED val eval_ftree_def = Define ‘ eval_ftree 0 (fs : ('a, 'b) ftree) (g : 'a -> 'b result) (x : 'b result + ('a # num)) = Diverge ∧ eval_ftree (SUC n) fs g x = case x of | INL r => r | INR (y, i) => case g y of | Fail e => Fail e | Diverge => Diverge | Return z => let f = EL i fs in eval_ftree n fs g (f z) ’ val length_body_funs_def = Define “ [ (\ls. case ls of | ListCons x tl => INR (tl, 1) | ListNil => INL (return 0)), (\n. INL (return (1 + n))) ] ” “:('a, 'b) FT” Define val nth_body = Define ‘ ’ “INL” “INR” “ Rec ( case ls of | ListCons x tl => do INR (tl, 0) od | ListNil => INL (return 0), [NRec (\n. return (1 + n))]) ” “ case ls of | ListCons x tl => if u32_to_int i = (0:int) then (Return x) else do i0 <- u32_sub i (int_to_u32 1); y <- nth tl i0; return y od | ListNil => Fail Failure ” “:'a + 'b” “:'a # 'b” (*** Encoding of a function *) Datatype: ('a, 'b) test = Return ('a -> 'b) End val tyax = new_type_definition ("three", Q.prove(`?p. (\(x,y). ~(x /\ y)) p`, cheat)) val three_bij = define_new_type_bijections {name="three_tybij", ABS="abs3", REP="rep3", tyax=tyax} type_of “rep3” type_of “abs3” m “” Q.EXISTS_TAC `(F,F)` THEN GEN_BETA_TAC THEN REWRITE_TAC [])); “Return (\x. x)” Datatype: ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result) End Datatype: 'a ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result) End Datatype: ftree = Rec ('a -> ('a result + ('a # ftree))) | NRec ('a -> 'a result) End Datatype: result = Return 'a | Fail error | Diverge End Type M = ``: 'a result`` val fix_def = Define ‘ fix (f : ('a -> 'b result) -> 'a -> 'b result) (x : 'a) : 'b result = if (∃ n. fix_fuel_P f x n) then fix_fuel ($LEAST (fix_fuel_P f x)) f x else Diverge ’ val _ = export_theory ()