open HolKernel boolLib bossLib Parse val _ = new_theory"test" (* SML declarations *) (* for example: *) (*val th = save_thm("SKOLEM_AGAIN",SKOLEM_THM) *) local open boolTheory integerTheory wordsTheory stringTheory in end Datatype: error = Failure End Datatype: result = Return 'a | Fail error | Loop End Type M = ``: 'a result`` (* TODO: rename *) val st_ex_bind_def = Define ` (st_ex_bind : 'a M -> ('a -> 'b M) -> 'b M) x f = case x of Return y => f y | Fail e => Fail e | Loop => Loop`; val st_ex_return_def = Define ` (st_ex_return : 'a -> 'a M) x = Return x`; Overload monad_bind[local] = ``st_ex_bind`` Overload monad_unitbind[local] = ``\x y. st_ex_bind x (\z. y)`` Overload monad_ignore_bind[local] = ``\x y. st_ex_bind x (\z. y)`` (*Overload ex_bind[local] = ``st_ex_bind`` *) (* Overload ex_return[local] = ``st_ex_return`` *) (*Overload failwith = ``raise_Fail``*) (* Temporarily allow the monadic syntax *) val _ = monadsyntax.temp_add_monadsyntax (); val test1_def = Define ` test1 (x : bool) = Return x` val is_true_def = Define ‘ is_true (x : bool) = if x then Return () else Fail Failure’ val test1_def = Define ‘ test1 (x : bool) = Return x’ val test_monad_def = Define ` test_monad v = do x <- Return v; Return x od`; val test_monad2_def = Define ` test_monad2 = do x <- Return T; Return x od`; val test_monad3_def = Define ` test_monad3 x = do is_true x; Return x od`; (** * Arithmetic *) open intLib val test_int1 = Define ‘int1 = 32’ val test_int2 = Define ‘int2 = -32’ Theorem INT_THM1: !(x y : int). x > 0 ==> y > 0 ==> x + y > 0 Proof ARITH_TAC QED Theorem INT_THM2: !(x : int). T Proof rw[] QED val _ = prefer_int () val x = “-36217863217862718” (* Deactivate notations for int *) val _ = deprecate_int () open arithmeticTheory val m = Hol_pp.print_apropos; val f = Hol_pp.print_find; (* m “SUC (x : num) + y = _” m “(ZERO : num) < SUC y” m “(_ : num) < SUC y” m “x < (y : num) <=> _” f "ADD" ADD val x = “1:num” dest_term x val (x1, x2) = dest_comb x dest_term “0n:num” dest_term “ZERO:num” m “ZERO + (_ : num) = _” m “BIT1 _ = _” NUMERAL_DEF val x = “ZERO = (0:num)” dest_term x m “0 < SUC 0” *) (* Display types on/off: M-h C-t *) (* Move back: M-h b *) val _ = numLib.deprecate_num () val _ = numLib.prefer_num () (* m “!x. x = x” *) Theorem NAT_THM1: !(n : num). n < n + 1 Proof Induct_on ‘n’ >> DECIDE_TAC QED Theorem NAT_THM2: !(n : num). n < n + (1 : num) Proof gen_tac >> Induct_on ‘n’ >- ( PURE_REWRITE_TAC [ADD, NUMERAL_DEF, BIT1, ALT_ZERO] >> PURE_REWRITE_TAC [prim_recTheory.LESS_0_0]) >> PURE_REWRITE_TAC [ADD] >> irule prim_recTheory.LESS_MONO >> asm_rewrite_tac [] QED val x = “1278361286371286:num” (********************** PRIMITIVES *) val _ = prefer_int () val _ = new_type ("u32", 0) val _ = new_type ("i32", 0) val u32_min_def = Define ‘u32_min = (0:int)’ val u32_max_def = Define ‘u32_max = (4294967295:int)’ (* TODO: change that *) val usize_max_def = Define ‘usize_max = (4294967295:int)’ val i32_min_def = Define ‘i32_min = (-2147483648:int)’ val i32_max_def = Define ‘i32_max = (2147483647:int)’ val _ = new_constant ("u32_to_int", “:u32 -> int”) val _ = new_constant ("i32_to_int", “:i32 -> int”) val _ = new_constant ("int_to_u32", “:int -> u32”) val _ = new_constant ("int_to_i32", “:int -> i32”) (* TODO: change to "...of..." *) val u32_to_int_bounds = new_axiom ( "u32_to_int_bounds", “!n. u32_min <= u32_to_int n /\ u32_to_int n <= u32_max”) val i32_to_int_bounds = new_axiom ( "i32_to_int_bounds", “!n. i32_min <= i32_to_int n /\ i32_to_int n <= i32_max”) val int_to_u32_id = new_axiom ( "int_to_u32_id", “!n. u32_min <= n /\ n <= u32_max ==> u32_to_int (int_to_u32 n) = n”) val int_to_i32_id = new_axiom ( "int_to_i32_id", “!n. i32_min <= n /\ n <= i32_max ==> i32_to_int (int_to_i32 n) = n”) val mk_u32_def = Define ‘mk_u32 n = if u32_min <= n /\ n <= u32_max then Return (int_to_u32 n) else Fail Failure’ val u32_add_def = Define ‘u32_add x y = mk_u32 ((u32_to_int x) + (u32_to_int y))’ Theorem MK_U32_SUCCESS: !n. u32_min <= n /\ n <= u32_max ==> mk_u32 n = Return (int_to_u32 n) Proof rw[mk_u32_def] QED Theorem U32_ADD_EQ: !x y. u32_to_int x + u32_to_int y <= u32_max ==> ?z. u32_add x y = Return z /\ u32_to_int z = u32_to_int x + u32_to_int y Proof rpt gen_tac >> rpt DISCH_TAC >> exists_tac “int_to_u32 (u32_to_int x + u32_to_int y)” >> imp_res_tac MK_U32_SUCCESS >> (* There is probably a better way of doing this *) sg ‘u32_min <= u32_to_int x’ >- (rw[u32_to_int_bounds]) >> sg ‘u32_min <= u32_to_int y’ >- (rw[u32_to_int_bounds]) >> fs [u32_min_def, u32_add_def] >> irule int_to_u32_id >> fs[u32_min_def] QED val u32_sub_def = Define ‘u32_sub x y = mk_u32 ((u32_to_int x) - (u32_to_int y))’ Theorem U32_SUB_EQ: !x y. u32_min <= u32_to_int x - u32_to_int y ==> ?z. u32_sub x y = Return z /\ u32_to_int z = u32_to_int x - u32_to_int y Proof rpt gen_tac >> rpt DISCH_TAC >> exists_tac “int_to_u32 (u32_to_int x - u32_to_int y)” >> imp_res_tac MK_U32_SUCCESS >> (* There is probably a better way of doing this *) sg ‘u32_to_int x − u32_to_int y ≤ u32_max’ >-( sg ‘u32_to_int x <= u32_max’ >- (rw[u32_to_int_bounds]) >> sg ‘u32_min <= u32_to_int y’ >- (rw[u32_to_int_bounds]) >> fs [u32_min_def] >> COOPER_TAC ) >> fs [u32_min_def, u32_sub_def] >> irule int_to_u32_id >> fs[u32_min_def] QED val mk_i32_def = Define ‘mk_i32 n = if i32_min <= n /\ n <= i32_max then Return (int_to_i32 n) else Fail Failure’ val i32_add_def = Define ‘i32_add x y = mk_i32 ((i32_to_int x) + (i32_to_int y))’ Theorem MK_I32_SUCCESS: !n. i32_min <= n /\ n <= i32_max ==> mk_i32 n = Return (int_to_i32 n) Proof rw[mk_i32_def] QED Theorem I32_ADD_EQ: !x y. i32_min <= i32_to_int x + i32_to_int y ==> i32_to_int x + i32_to_int y <= i32_max ==> ?z. i32_add x y = Return z /\ i32_to_int z = i32_to_int x + i32_to_int y Proof rpt gen_tac >> rpt DISCH_TAC >> exists_tac “int_to_i32 (i32_to_int x + i32_to_int y)” >> imp_res_tac MK_I32_SUCCESS >> fs [i32_min_def, i32_add_def] >> irule int_to_i32_id >> fs[i32_min_def] QED open listTheory val _ = new_type ("vec", 1) val _ = new_constant ("vec_to_list", “:'a vec -> 'a list”) val VEC_TO_LIST_NUM_BOUNDS = new_axiom ( "VEC_TO_LIST_BOUNDS", “!v. let l = LENGTH (vec_to_list v) in (0:num) <= l /\ l <= (4294967295:num)”) Theorem VEC_TO_LIST_INT_BOUNDS: !v. let l = int_of_num (LENGTH (vec_to_list v)) in u32_min <= l /\ l <= u32_max Proof gen_tac >> rw [u32_min_def, u32_max_def] >> assume_tac VEC_TO_LIST_NUM_BOUNDS >> fs[] QED val VEC_LEN_DEF = Define ‘vec_len v = int_to_u32 (int_of_num (LENGTH (vec_to_list v)))’ (* (* Useless *) Theorem VEC_LEN_BOUNDS: !v. u32_min <= u32_to_int (vec_len v) /\ u32_to_int (vec_len v) <= u32_max Proof gen_tac >> qspec_then ‘v’ assume_tac VEC_TO_LIST_INT_BOUNDS >> fs[VEC_LEN_DEF] >> IMP_RES_TAC int_to_u32_id >> fs[] QED *) (* The type parameters are ordered in alphabetical order *) Datatype: test = Variant1 'b | Variant2 'a End Datatype: test2 = Variant1_1 'T2 | Variant2_1 'T1 End Datatype: test2 = Variant1_2 'T1 | Variant2_2 'T2 End (* “Variant1_1 3” “Variant1_2 3” type_of “CONS 3” *) (* TODO: argument order, we must also omit arguments in new type *) Datatype: list_t = ListCons 't list_t | ListNil End val list_nth_mut_loop_loop_fwd_def = Define ‘ list_nth_mut_loop_loop_fwd (ls : 't list_t) (i : u32) : 't result = case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); list_nth_mut_loop_loop_fwd tl i0 od | ListNil => Fail Failure ’ (* CoInductive coind: !x y. coind x /\ coind y ==> coind (x + y) End *) (* (* This generates inconsistent theorems *) CoInductive loop: !x. loop x = if x then loop x else 0 End CoInductive loop: !(x : int). loop x = if x > 0 then loop (x - 1) else 0 End *) (* This terminates *) val list_nth_mut_loop_loop_fwd_def = Define ‘ list_nth_mut_loop_loop_fwd (ls : 't list_t) (i : u32) : 't result = case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); list_nth_mut_loop_loop_fwd tl i0 od | ListNil => Fail Failure ’ (* This is sort of a coinductive definition. This can be justified: - we first define a version [nth_fuel] which uses fuel (and is thus terminating) - we define the predicate P: P ls i n = case nth_fuel n ls i of Return _ => T | _ => F - we then use [LEAST] (least upper bound for natural numbers) to define nth as: “nth ls i = if (?n. P n) then nth_fuel (LEAST (P ls i)) ls i else Fail Loop ” - we finally prove that nth satisfies the proper equation. We would need the following intermediate lemma: !n. n < LEAST (P ls i) ==> nth_fuel n ls i = Fail _ /\ n >= LEAST (P ls i) ==> nth_fuel n ls i = nth_fuel (LEAST P ls i) ls i *) val _ = new_constant ("nth", “:'t list_t -> u32 -> 't result”) val nth_def = new_axiom ("nth_def", “ nth (ls : 't list_t) (i : u32) : 't result = case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od | ListNil => Fail Failure ”) (*** Examples of proofs on [nth] *) val list_t_v_def = Define ‘ list_t_v ls = case ls of | ListCons x tl => x :: list_t_v tl | ListNil => [] ’ (* TODO: move *) open dep_rewrite open integerTheory Theorem INT_OF_NUM_INJ: !n m. &n = &m ==> n = m Proof rpt strip_tac >> fs [Num] QED Theorem NUM_SUB_1_EQ: !i. 0 <= i - 1 ==> Num i = SUC (Num (i-1)) Proof rpt strip_tac >> (* 0 <= i *) sg ‘0 <= i’ >- COOPER_TAC >> (* Get rid of the SUC *) sg ‘SUC (Num (i - 1)) = 1 + Num (i - 1)’ >-(rw [ADD]) >> rw [] >> (* Convert to integers*) irule INT_OF_NUM_INJ >> imp_res_tac (GSYM INT_OF_NUM) >> (* Associativity of & *) PURE_REWRITE_TAC [GSYM INT_ADD] >> fs [] QED (* TODO: - list all the integer variables, and insert bounds in the assumptions - replace u32_min by 0? - i - 1 - auto lookup of spec lemmas *) Theorem nth_lem: !(ls : 't list_t) (i : u32). u32_to_int i < int_of_num (LENGTH (list_t_v ls)) ==> case nth ls i of | Return x => x = EL (Num (u32_to_int i)) (list_t_v ls) | Fail _ => F | Loop => F Proof Induct_on ‘ls’ >~ [‘ListNil’] >> rpt strip_tac >> PURE_ONCE_REWRITE_TAC [nth_def] >> rw [] >-( (* TODO: automate this *) fs [list_t_v_def, LENGTH] >> qspec_then ‘i’ assume_tac u32_to_int_bounds >> rw [] >> fs [u32_min_def] >> intLib.COOPER_TAC ) >- ( PURE_ONCE_REWRITE_TAC [list_t_v_def] >> rw [HD] ) >> (* TODO: we need specialized tactics here - first: subgoal *) sg ‘u32_min <= u32_to_int i - u32_to_int (int_to_u32 1)’ >-( fs [u32_min_def] >> (* We need to detect that we're in the bounds, etc. *) DEP_ONCE_REWRITE_TAC [int_to_u32_id] >> strip_tac >- (fs [u32_min_def, u32_max_def] >> COOPER_TAC) >> sg ‘u32_min <= u32_to_int i’ >- (rw[u32_to_int_bounds]) >> fs [u32_min_def] >> COOPER_TAC ) >> imp_res_tac U32_SUB_EQ >> fs [st_ex_bind_def] >> (* Automate this *) PURE_ONCE_REWRITE_TAC [list_t_v_def] >> rw [] >> (* Automate this *) sg ‘u32_to_int (int_to_u32 1) = 1’ >-( DEP_ONCE_REWRITE_TAC [int_to_u32_id] >> fs [u32_min_def, u32_max_def] >> COOPER_TAC ) >> fs [] >> (* TODO: automate this *) sg ‘u32_min <= u32_to_int z’ >-(rw[u32_to_int_bounds]) >> fs [u32_min_def] >> qspec_then ‘u32_to_int z’ imp_res_tac NUM_SUB_1_EQ >> rw [] >> (* Finish the proof by recursion *) pop_last_assum (qspec_then ‘z’ assume_tac) >> pop_last_assum mp_tac >> qspec_then ‘ListCons t ls’ assume_tac list_t_v_def >> rw [] >> fs [INT] >> sg ‘u32_to_int z < &LENGTH (list_t_v ls)’ >- COOPER_TAC >> fs [] >> (* Rem.: rfs! *) rfs [] QED (*** * Example of how to get rid of the fuel in practice *) val nth_fuel_def = Define ‘ nth_fuel (n : num) (ls : 't list_t) (i : u32) : 't result = case n of | 0 => Loop | SUC n => do case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); nth_fuel n tl i0 od | ListNil => Fail Failure od ’ (* whileTheory.LEAST_DEF type_of “$LEAST” val x = “LEAST_DEF” *) val is_loop_def = Define ‘is_loop r = case r of Loop => T | _ => F’ val nth_fuel_P_def = Define ‘ nth_fuel_P ls i n = ~is_loop (nth_fuel n ls i) ’ Theorem nth_fuel_mono: !n m ls i. n <= m ==> if is_loop (nth_fuel n ls i) then T else nth_fuel n ls i = nth_fuel m ls i Proof Induct_on ‘n’ >- ( rpt gen_tac >> DISCH_TAC >> PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> rw[is_loop_def] ) >> (* Interesting case *) rpt gen_tac >> DISCH_TAC >> CASE_TAC >> Cases_on ‘m’ >- ( (* Contradiction: SUC n < 0 *) sg ‘SUC n = 0’ >- decide_tac >> fs [is_loop_def] ) >> fs [is_loop_def] >> pop_assum mp_tac >> PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> fs [] >> DISCH_TAC >> (* We just have to explore all the paths: we can have dedicated tactics for that (we need to do case analysis) *) Cases_on ‘ls’ >> fs [] >> Cases_on ‘u32_to_int (i :u32) = (0 :int)’ >> fs [] >> fs [st_ex_bind_def] >> Cases_on ‘u32_sub (i :u32) (int_to_u32 (1 :int))’ >> fs [] >> (* Apply the induction hypothesis *) first_x_assum (qspecl_then [‘n'’, ‘l’, ‘a’] assume_tac) >> first_x_assum imp_res_tac >> pop_assum mp_tac >> CASE_TAC QED Theorem nth_fuel_P_mono: !n m ls i. n <= m ==> nth_fuel_P ls i n ==> nth_fuel n ls i = nth_fuel m ls i Proof rpt gen_tac >> rpt DISCH_TAC >> fs [nth_fuel_P_def] >> imp_res_tac nth_fuel_mono >> pop_assum (qspecl_then [‘ls’, ‘i’] assume_tac) >> pop_assum mp_tac >> CASE_TAC >> fs [] QED Theorem nth_fuel_least_fail_mono: !n ls i. n < $LEAST (nth_fuel_P ls i) ==> nth_fuel n ls i = Loop Proof rpt gen_tac >> disch_tac >> imp_res_tac whileTheory.LESS_LEAST >> fs [nth_fuel_P_def, is_loop_def] >> pop_assum mp_tac >> CASE_TAC QED Theorem nth_fuel_least_success_mono: !n ls i. $LEAST (nth_fuel_P ls i) <= n ==> nth_fuel n ls i = nth_fuel ($LEAST (nth_fuel_P ls i)) ls i Proof rpt gen_tac >> disch_tac >> (* Case disjunction on whether there exists a fuel such that it terminates *) Cases_on ‘?m. nth_fuel_P ls i m’ >- ( (* Terminates *) irule EQ_SYM >> irule nth_fuel_P_mono >> fs [] >> (* Prove that calling with the least upper bound of fuel succeeds *) qspec_then ‘nth_fuel_P (ls :α list_t) (i :u32)’ imp_res_tac whileTheory.LEAST_EXISTS_IMP ) >> (* Doesn't terminate *) fs [] >> sg ‘~(nth_fuel_P ls i n)’ >- fs [] >> sg ‘~(nth_fuel_P ls i ($LEAST (nth_fuel_P ls i)))’ >- fs [] >> fs [nth_fuel_P_def, is_loop_def] >> pop_assum mp_tac >> CASE_TAC >> pop_assum mp_tac >> pop_assum mp_tac >> CASE_TAC QED val nth_def_raw = Define ‘ nth ls i = if (?n. nth_fuel_P ls i n) then nth_fuel ($LEAST (nth_fuel_P ls i)) ls i else Loop ’ (* This makes the proofs easier, in that it helps us control the context *) val nth_expand_def = Define ‘ nth_expand nth ls i = case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od | ListNil => Fail Failure ’ (* Prove the important theorems *) Theorem nth_def_terminates: !ls i. (?n. nth_fuel_P ls i n) ==> nth ls i = nth_expand nth ls i Proof rpt strip_tac >> fs [nth_expand_def] >> PURE_ONCE_REWRITE_TAC [nth_def_raw] >> (* Prove that the least upper bound is <= n *) sg ‘$LEAST (nth_fuel_P ls i) <= n’ >-( qspec_then ‘nth_fuel_P (ls :α list_t) (i :u32)’ imp_res_tac whileTheory.LEAST_EXISTS_IMP >> spose_not_then assume_tac >> fs [] ) >> (* Use the monotonicity theorem - TODO: ? *) imp_res_tac nth_fuel_least_success_mono >> (* Rewrite only on the left - TODO: easy way ?? *) qspecl_then [‘$LEAST (nth_fuel_P ls i)’, ‘ls’, ‘i’] assume_tac nth_fuel_def >> (* TODO: how to discard assumptions?? *) fs [] >> pop_assum (fn _ => fs []) >> (* Cases on the least upper bound *) Cases_on ‘$LEAST (nth_fuel_P ls i)’ >> rw [] >- ( (* The bound is equal to 0: contradiction *) sg ‘nth_fuel 0 ls i = Loop’ >- (PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> rw []) >> fs [nth_fuel_P_def, is_loop_def] ) >> (* Bound not equal to 0 *) fs [nth_fuel_P_def, is_loop_def] >> (* Explore all the paths *) fs [st_ex_bind_def] >> Cases_on ‘ls’ >> rw [] >> fs [] >> Cases_on ‘u32_sub i (int_to_u32 1)’ >> rw [] >> fs [] >> (* Recursive call: use monotonicity - we have an assumption which eliminates the Loop case *) Cases_on ‘nth_fuel n' l a’ >> rw [] >> fs [] >> (sg ‘nth_fuel_P l a n'’ >- fs [nth_fuel_P_def, is_loop_def]) >> (sg ‘$LEAST (nth_fuel_P l a) <= n'’ >-( qspec_then ‘nth_fuel_P l a’ imp_res_tac whileTheory.LEAST_EXISTS_IMP >> spose_not_then assume_tac >> fs [])) >> imp_res_tac nth_fuel_least_success_mono >> fs [] QED (* Prove the important theorems *) Theorem nth_def_loop: !ls i. (!n. ~nth_fuel_P ls i n) ==> nth ls i = nth_expand nth ls i Proof rpt gen_tac >> PURE_ONCE_REWRITE_TAC [nth_def_raw] >> strip_tac >> rw[] >> (* Non-terminating case *) sg ‘∀n. ¬nth_fuel_P ls i (SUC n)’ >- rw [] >> fs [nth_fuel_P_def, is_loop_def] >> pop_assum mp_tac >> PURE_ONCE_REWRITE_TAC [nth_fuel_def] >> rw [] >> fs [nth_expand_def] >> (* Evaluate all the paths *) fs [st_ex_bind_def] >> Cases_on ‘ls’ >> rw [] >> fs [] >> Cases_on ‘u32_sub i (int_to_u32 1)’ >> rw [] >> fs [] >> (* Use the definition of nth *) rw [nth_def_raw] >> first_x_assum (qspec_then ‘$LEAST (nth_fuel_P l a)’ assume_tac) >> Cases_on ‘nth_fuel ($LEAST (nth_fuel_P l a)) l a’ >> fs [] QED (* The final theorem *) Theorem nth_def: !ls i. nth ls i = case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od | ListNil => Fail Failure Proof rpt strip_tac >> Cases_on ‘?n. nth_fuel_P ls i n’ >-( assume_tac nth_def_terminates >> fs [nth_expand_def] >> pop_assum irule >> metis_tac []) >> fs [] >> imp_res_tac nth_def_loop >> fs [nth_expand_def] QED (* Je viens de finir ma petite expérimentation avec le fuel : ça marche bien. Par exemple, si je pose les définitions suivantes : Datatype: result = Return 'a | Fail error | Loop End (* Omitting some definitions like the bind *) val _ = Define ‘ nth_fuel (n : num) (ls : 't list_t) (i : u32) : 't result = case n of | 0 => Loop | SUC n => do case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); nth_fuel n tl i0 od | ListNil => Fail Failure od ’ val _ = Define 'is_loop r = case r of Loop => T | _ => F' val _ = Define 'nth_fuel_P ls i n = ~is_loop (nth_fuel n ls i)' (* $LEAST returns the least upper bound for a predicate (if it exists - otherwise it returns an arbitrary number) *) val _ = Define ‘ nth ls i = if (?n. nth_fuel_P ls i n) then nth_fuel ($LEAST (nth_fuel_P ls i)) ls i else Loop ’ J'arrive à montrer (c'est un chouïa technique) : Theorem nth_def: !ls i. nth ls i = case ls of | ListCons x tl => if u32_to_int i = (0:int) then Return x else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od | ListNil => Fail Failure *)