/// This file lists primitive and assumed functions and types module Primitives open FStar.Mul open FStar.List.Tot #set-options "--z3rlimit 15 --fuel 0 --ifuel 1" (*** Utilities *) val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) : ls':list a{ length ls' = length ls /\ index ls' i == x } #push-options "--fuel 1" let rec list_update #a ls i x = match ls with | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x #pop-options (*** Result *) type error : Type0 = | Failure | OutOfFuel type result (a : Type0) : Type0 = | Return : v:a -> result a | Fail : e:error -> result a // Monadic return operator unfold let return (#a : Type0) (x : a) : result a = Return x // Monadic bind operator. // Allows to use the notation: // ``` // let* x = y in // ... // ``` unfold let (let*) (#a #b : Type0) (m: result a) (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) : result b = match m with | Return x -> f x | Fail e -> Fail e // Monadic assert(...) let massert (b:bool) : result unit = if b then Return () else Fail Failure // Normalize and unwrap a successful result (used for globals). let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x (*** Misc *) type char = FStar.Char.char type string = string let is_zero (n: nat) : bool = n = 0 let decrease (n: nat{n > 0}) : nat = n - 1 let core_mem_replace (a : Type0) (x : a) (y : a) : a & a = (x, x) // We don't really use raw pointers for now type mut_raw_ptr (t : Type0) = { v : t } type const_raw_ptr (t : Type0) = { v : t } (*** Scalars *) /// Rem.: most of the following code was partially generated assume val size_numbits : pos // TODO: we could use FStar.Int.int_t and FStar.UInt.int_t let isize_min : int = -9223372036854775808 // TODO: should be opaque let isize_max : int = 9223372036854775807 // TODO: should be opaque let i8_min : int = -128 let i8_max : int = 127 let i16_min : int = -32768 let i16_max : int = 32767 let i32_min : int = -2147483648 let i32_max : int = 2147483647 let i64_min : int = -9223372036854775808 let i64_max : int = 9223372036854775807 let i128_min : int = -170141183460469231731687303715884105728 let i128_max : int = 170141183460469231731687303715884105727 let usize_min : int = 0 let usize_max : int = 4294967295 // TODO: should be opaque let u8_min : int = 0 let u8_max : int = 255 let u16_min : int = 0 let u16_max : int = 65535 let u32_min : int = 0 let u32_max : int = 4294967295 let u64_min : int = 0 let u64_max : int = 18446744073709551615 let u128_min : int = 0 let u128_max : int = 340282366920938463463374607431768211455 type scalar_ty = | Isize | I8 | I16 | I32 | I64 | I128 | Usize | U8 | U16 | U32 | U64 | U128 let is_unsigned = function | Isize | I8 | I16 | I32 | I64 | I128 -> false | Usize | U8 | U16 | U32 | U64 | U128 -> true let scalar_min (ty : scalar_ty) : int = match ty with | Isize -> isize_min | I8 -> i8_min | I16 -> i16_min | I32 -> i32_min | I64 -> i64_min | I128 -> i128_min | Usize -> usize_min | U8 -> u8_min | U16 -> u16_min | U32 -> u32_min | U64 -> u64_min | U128 -> u128_min let scalar_max (ty : scalar_ty) : int = match ty with | Isize -> isize_max | I8 -> i8_max | I16 -> i16_max | I32 -> i32_max | I64 -> i64_max | I128 -> i128_max | Usize -> usize_max | U8 -> u8_max | U16 -> u16_max | U32 -> u32_max | U64 -> u64_max | U128 -> u128_max type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty} let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) = if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x) let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = if y <> 0 then mk_scalar ty (x / y) else Fail Failure /// The remainder operation let int_rem (x : int) (y : int{y <> 0}) : int = if x >= 0 then (x % y) else -(x % y) (* Checking consistency with Rust *) let _ = assert_norm(int_rem 1 2 = 1) let _ = assert_norm(int_rem (-1) 2 = -1) let _ = assert_norm(int_rem 1 (-2) = 1) let _ = assert_norm(int_rem (-1) (-2) = -1) let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = mk_scalar ty (x + y) let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = mk_scalar ty (x - y) let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) = mk_scalar ty (x * y) let scalar_xor (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : scalar ty = match ty with | U8 -> FStar.UInt.logxor #8 x y | U16 -> FStar.UInt.logxor #16 x y | U32 -> FStar.UInt.logxor #32 x y | U64 -> FStar.UInt.logxor #64 x y | U128 -> FStar.UInt.logxor #128 x y | Usize -> admit() // TODO | I8 -> // Encoding issues... normalize_spec (FStar.Int.int_t 8); normalize_spec (scalar I8); FStar.Int.logxor #8 x y | I16 -> // Encoding issues... normalize_spec (FStar.Int.int_t 16); normalize_spec (scalar I16); FStar.Int.logxor #16 x y | I32 -> FStar.Int.logxor #32 x y | I64 -> FStar.Int.logxor #64 x y | I128 -> // Encoding issues... normalize_spec (FStar.Int.int_t 128); normalize_spec (scalar I128); FStar.Int.logxor #128 x y | Isize -> admit() // TODO let scalar_or (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : scalar ty = match ty with | U8 -> FStar.UInt.logor #8 x y | U16 -> FStar.UInt.logor #16 x y | U32 -> FStar.UInt.logor #32 x y | U64 -> FStar.UInt.logor #64 x y | U128 -> FStar.UInt.logor #128 x y | Usize -> admit() // TODO | I8 -> // Encoding issues... normalize_spec (FStar.Int.int_t 8); normalize_spec (scalar I8); FStar.Int.logor #8 x y | I16 -> // Encoding issues... normalize_spec (FStar.Int.int_t 16); normalize_spec (scalar I16); FStar.Int.logor #16 x y | I32 -> FStar.Int.logor #32 x y | I64 -> FStar.Int.logor #64 x y | I128 -> // Encoding issues... normalize_spec (FStar.Int.int_t 128); normalize_spec (scalar I128); FStar.Int.logor #128 x y | Isize -> admit() // TODO let scalar_and (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : scalar ty = match ty with | U8 -> FStar.UInt.logand #8 x y | U16 -> FStar.UInt.logand #16 x y | U32 -> FStar.UInt.logand #32 x y | U64 -> FStar.UInt.logand #64 x y | U128 -> FStar.UInt.logand #128 x y | Usize -> admit() // TODO | I8 -> // Encoding issues... normalize_spec (FStar.Int.int_t 8); normalize_spec (scalar I8); FStar.Int.logand #8 x y | I16 -> // Encoding issues... normalize_spec (FStar.Int.int_t 16); normalize_spec (scalar I16); FStar.Int.logand #16 x y | I32 -> FStar.Int.logand #32 x y | I64 -> FStar.Int.logand #64 x y | I128 -> // Encoding issues... normalize_spec (FStar.Int.int_t 128); normalize_spec (scalar I128); FStar.Int.logand #128 x y | Isize -> admit() // TODO // Shift left let scalar_shl (#ty0 #ty1 : scalar_ty) (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = admit() // Shift right let scalar_shr (#ty0 #ty1 : scalar_ty) (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) = admit() (** Cast an integer from a [src_ty] to a [tgt_ty] *) // TODO: check the semantics of casts in Rust let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) = mk_scalar tgt_ty x // This can't fail, but for now we make all casts faillible (easier for the translation) let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) = mk_scalar tgt_ty (if x then 1 else 0) /// The scalar types type isize : eqtype = scalar Isize type i8 : eqtype = scalar I8 type i16 : eqtype = scalar I16 type i32 : eqtype = scalar I32 type i64 : eqtype = scalar I64 type i128 : eqtype = scalar I128 type usize : eqtype = scalar Usize type u8 : eqtype = scalar U8 type u16 : eqtype = scalar U16 type u32 : eqtype = scalar U32 type u64 : eqtype = scalar U64 type u128 : eqtype = scalar U128 let core_isize_min : isize = isize_min let core_isize_max : isize = isize_max let core_i8_min : i8 = i8_min let core_i8_max : i8 = i8_max let core_i16_min : i16 = i16_min let core_i16_max : i16 = i16_max let core_i32_min : i32 = i32_min let core_i32_max : i32 = i32_max let core_i64_min : i64 = i64_min let core_i64_max : i64 = i64_max let core_i128_min : i128 = i128_min let core_i128_max : i128 = i128_max let core_usize_min : usize = usize_min let core_usize_max : usize = usize_max let core_u8_min : u8 = u8_min let core_u8_max : u8 = u8_max let core_u16_min : u16 = u16_min let core_u16_max : u16 = u16_max let core_u32_min : u32 = u32_min let core_u32_max : u32 = u32_max let core_u64_min : u64 = u64_min let core_u64_max : u64 = u64_max let core_u128_min : u128 = u128_min let core_u128_max : u128 = u128_max /// Negation let isize_neg = scalar_neg #Isize let i8_neg = scalar_neg #I8 let i16_neg = scalar_neg #I16 let i32_neg = scalar_neg #I32 let i64_neg = scalar_neg #I64 let i128_neg = scalar_neg #I128 /// Division let isize_div = scalar_div #Isize let i8_div = scalar_div #I8 let i16_div = scalar_div #I16 let i32_div = scalar_div #I32 let i64_div = scalar_div #I64 let i128_div = scalar_div #I128 let usize_div = scalar_div #Usize let u8_div = scalar_div #U8 let u16_div = scalar_div #U16 let u32_div = scalar_div #U32 let u64_div = scalar_div #U64 let u128_div = scalar_div #U128 /// Remainder let isize_rem = scalar_rem #Isize let i8_rem = scalar_rem #I8 let i16_rem = scalar_rem #I16 let i32_rem = scalar_rem #I32 let i64_rem = scalar_rem #I64 let i128_rem = scalar_rem #I128 let usize_rem = scalar_rem #Usize let u8_rem = scalar_rem #U8 let u16_rem = scalar_rem #U16 let u32_rem = scalar_rem #U32 let u64_rem = scalar_rem #U64 let u128_rem = scalar_rem #U128 /// Addition let isize_add = scalar_add #Isize let i8_add = scalar_add #I8 let i16_add = scalar_add #I16 let i32_add = scalar_add #I32 let i64_add = scalar_add #I64 let i128_add = scalar_add #I128 let usize_add = scalar_add #Usize let u8_add = scalar_add #U8 let u16_add = scalar_add #U16 let u32_add = scalar_add #U32 let u64_add = scalar_add #U64 let u128_add = scalar_add #U128 /// Subtraction let isize_sub = scalar_sub #Isize let i8_sub = scalar_sub #I8 let i16_sub = scalar_sub #I16 let i32_sub = scalar_sub #I32 let i64_sub = scalar_sub #I64 let i128_sub = scalar_sub #I128 let usize_sub = scalar_sub #Usize let u8_sub = scalar_sub #U8 let u16_sub = scalar_sub #U16 let u32_sub = scalar_sub #U32 let u64_sub = scalar_sub #U64 let u128_sub = scalar_sub #U128 /// Multiplication let isize_mul = scalar_mul #Isize let i8_mul = scalar_mul #I8 let i16_mul = scalar_mul #I16 let i32_mul = scalar_mul #I32 let i64_mul = scalar_mul #I64 let i128_mul = scalar_mul #I128 let usize_mul = scalar_mul #Usize let u8_mul = scalar_mul #U8 let u16_mul = scalar_mul #U16 let u32_mul = scalar_mul #U32 let u64_mul = scalar_mul #U64 let u128_mul = scalar_mul #U128 /// Xor let u8_xor = scalar_xor #U8 let u16_xor = scalar_xor #U16 let u32_xor = scalar_xor #U32 let u64_xor = scalar_xor #U64 let u128_xor = scalar_xor #U128 let usize_xor = scalar_xor #Usize let i8_xor = scalar_xor #I8 let i16_xor = scalar_xor #I16 let i32_xor = scalar_xor #I32 let i64_xor = scalar_xor #I64 let i128_xor = scalar_xor #I128 let isize_xor = scalar_xor #Isize /// Or let u8_or = scalar_or #U8 let u16_or = scalar_or #U16 let u32_or = scalar_or #U32 let u64_or = scalar_or #U64 let u128_or = scalar_or #U128 let usize_or = scalar_or #Usize let i8_or = scalar_or #I8 let i16_or = scalar_or #I16 let i32_or = scalar_or #I32 let i64_or = scalar_or #I64 let i128_or = scalar_or #I128 let isize_or = scalar_or #Isize /// And let u8_and = scalar_and #U8 let u16_and = scalar_and #U16 let u32_and = scalar_and #U32 let u64_and = scalar_and #U64 let u128_and = scalar_and #U128 let usize_and = scalar_and #Usize let i8_and = scalar_and #I8 let i16_and = scalar_and #I16 let i32_and = scalar_and #I32 let i64_and = scalar_and #I64 let i128_and = scalar_and #I128 let isize_and = scalar_and #Isize /// Shift left let u8_shl #ty = scalar_shl #U8 #ty let u16_shl #ty = scalar_shl #U16 #ty let u32_shl #ty = scalar_shl #U32 #ty let u64_shl #ty = scalar_shl #U64 #ty let u128_shl #ty = scalar_shl #U128 #ty let usize_shl #ty = scalar_shl #Usize #ty let i8_shl #ty = scalar_shl #I8 #ty let i16_shl #ty = scalar_shl #I16 #ty let i32_shl #ty = scalar_shl #I32 #ty let i64_shl #ty = scalar_shl #I64 #ty let i128_shl #ty = scalar_shl #I128 #ty let isize_shl #ty = scalar_shl #Isize #ty /// Shift right let u8_shr #ty = scalar_shr #U8 #ty let u16_shr #ty = scalar_shr #U16 #ty let u32_shr #ty = scalar_shr #U32 #ty let u64_shr #ty = scalar_shr #U64 #ty let u128_shr #ty = scalar_shr #U128 #ty let usize_shr #ty = scalar_shr #Usize #ty let i8_shr #ty = scalar_shr #I8 #ty let i16_shr #ty = scalar_shr #I16 #ty let i32_shr #ty = scalar_shr #I32 #ty let i64_shr #ty = scalar_shr #I64 #ty let i128_shr #ty = scalar_shr #I128 #ty let isize_shr #ty = scalar_shr #Isize #ty (*** core::ops *) // Trait declaration: [core::ops::index::Index] noeq type core_ops_index_Index (self idx : Type0) = { output : Type0; index : self → idx → result output } // Trait declaration: [core::ops::index::IndexMut] noeq type core_ops_index_IndexMut (self idx : Type0) = { indexInst : core_ops_index_Index self idx; index_mut : self → idx → result (indexInst.output & (indexInst.output → result self)); } // Trait declaration [core::ops::deref::Deref] noeq type core_ops_deref_Deref (self : Type0) = { target : Type0; deref : self → result target; } // Trait declaration [core::ops::deref::DerefMut] noeq type core_ops_deref_DerefMut (self : Type0) = { derefInst : core_ops_deref_Deref self; deref_mut : self → result (derefInst.target & (derefInst.target → result self)); } type core_ops_range_Range (a : Type0) = { start : a; end_ : a; } (*** [alloc] *) let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result (t & (t -> result t)) = Return (x, (fun x -> Return x)) // Trait instance let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = { target = self; deref = alloc_boxed_Box_deref self; } // Trait instance let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = { derefInst = alloc_boxed_Box_coreopsDerefInst self; deref_mut = alloc_boxed_Box_deref_mut self; } (*** Array *) type array (a : Type0) (n : usize) = s:list a{length s = n} // We tried putting the normalize_term condition as a refinement on the list // but it didn't work. It works with the requires clause. let mk_array (a : Type0) (n : usize) (l : list a) : Pure (array a n) (requires (normalize_term(FStar.List.Tot.length l) = n)) (ensures (fun _ -> True)) = normalize_term_spec (FStar.List.Tot.length l); l let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a = if i < length x then Return (index x i) else Fail Failure let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) = if i < length x then Return (list_update x i nx) else Fail Failure (*** Slice *) type slice (a : Type0) = s:list a{length s <= usize_max} let slice_len (a : Type0) (s : slice a) : usize = length s let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a = if i < length x then Return (index x i) else Fail Failure let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) = if i < length x then Return (list_update x i nx) else Fail Failure (*** Subslices *) let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) = if length s = n then Return s else Fail Failure // TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *) let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) = admit() let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) = admit() let array_repeat (a : Type0) (n : usize) (x : a) : array a n = admit() let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) = admit() let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) = admit() (*** Vector *) type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max} let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); [] let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v // Helper let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a = if i < length v then Return (index v i) else Fail Failure // Helper let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = if i < length v then Return (list_update v i x) else Fail Failure let alloc_vec_Vec_index_mut_usize (#a : Type0) (v: alloc_vec_Vec a) (i: usize) : result (a & (a → result (alloc_vec_Vec a))) = match alloc_vec_Vec_index_usize v i with | Return x -> Return (x, alloc_vec_Vec_update_usize v i) | Fail e -> Fail e let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) : Pure (result (alloc_vec_Vec a)) (requires True) (ensures (fun res -> match res with | Fail e -> e == Failure | Return v' -> length v' = length v + 1)) = if length v < usize_max then begin (**) assert_norm(length [x] == 1); (**) append_length v [x]; (**) assert(length (append v [x]) = length v + 1); Return (append v [x]) end else Fail Failure let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) = if i < length v then Return (list_update v i x) else Fail Failure // Trait declaration: [core::slice::index::private_slice_index::Sealed] type core_slice_index_private_slice_index_Sealed (self : Type0) = unit // Trait declaration: [core::slice::index::SliceIndex] noeq type core_slice_index_SliceIndex (self t : Type0) = { sealedInst : core_slice_index_private_slice_index_Sealed self; output : Type0; get : self → t → result (option output); get_mut : self → t → result (option output & (option output -> result t)); get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output); get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output); index : self → t → result output; index_mut : self → t → result (output & (output -> result t)); } // [core::slice::index::[T]::index]: forward function let core_slice_index_Slice_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) (s : slice t) (i : idx) : result inst.output = let* x = inst.get i s in match x with | None -> Fail Failure | Some x -> Return x // [core::slice::index::Range:::get]: forward function let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) : result (option (slice t)) = admit () // TODO // [core::slice::index::Range::get_mut]: forward function let core_slice_index_RangeUsize_get_mut (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t) & (option (slice t) -> result (slice t))) = admit () // TODO // [core::slice::index::Range::get_unchecked]: forward function let core_slice_index_RangeUsize_get_unchecked (t : Type0) : core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) = // Don't know what the model should be - for now we always fail to make // sure code which uses it fails fun _ _ -> Fail Failure // [core::slice::index::Range::get_unchecked_mut]: forward function let core_slice_index_RangeUsize_get_unchecked_mut (t : Type0) : core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) = // Don't know what the model should be - for now we always fail to make // sure code which uses it fails fun _ _ -> Fail Failure // [core::slice::index::Range::index]: forward function let core_slice_index_RangeUsize_index (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) = admit () // TODO // [core::slice::index::Range::index_mut]: forward function let core_slice_index_RangeUsize_index_mut (t : Type0) : core_ops_range_Range usize → slice t → result (slice t & (slice t -> result (slice t))) = admit () // TODO // [core::slice::index::[T]::index_mut]: forward function let core_slice_index_Slice_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : slice t → idx → result (inst.output & (inst.output -> result (slice t))) = admit () // // [core::array::[T; N]::index]: forward function let core_array_Array_index (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) (a : array t n) (i : idx) : result inst.output = admit () // TODO // [core::array::[T; N]::index_mut]: forward function let core_array_Array_index_mut (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) (a : array t n) (i : idx) : result (inst.indexInst.output & (inst.indexInst.output -> result (array t n))) = admit () // TODO // Trait implementation: [core::slice::index::private_slice_index::Range] let core_slice_index_private_slice_index_SealedRangeUsizeInst : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = () // Trait implementation: [core::slice::index::Range] let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) : core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = { sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst; output = slice t; get = core_slice_index_RangeUsize_get t; get_mut = core_slice_index_RangeUsize_get_mut t; get_unchecked = core_slice_index_RangeUsize_get_unchecked t; get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t; index = core_slice_index_RangeUsize_index t; index_mut = core_slice_index_RangeUsize_index_mut t; } // Trait implementation: [core::slice::index::[T]] let core_ops_index_IndexSliceTIInst (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : core_ops_index_Index (slice t) idx = { output = inst.output; index = core_slice_index_Slice_index t idx inst; } // Trait implementation: [core::slice::index::[T]] let core_ops_index_IndexMutSliceTIInst (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : core_ops_index_IndexMut (slice t) idx = { indexInst = core_ops_index_IndexSliceTIInst t idx inst; index_mut = core_slice_index_Slice_index_mut t idx inst; } // Trait implementation: [core::array::[T; N]] let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx) : core_ops_index_Index (array t n) idx = { output = inst.output; index = core_array_Array_index t idx n inst; } // Trait implementation: [core::array::[T; N]] let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx) : core_ops_index_IndexMut (array t n) idx = { indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst; index_mut = core_array_Array_index_mut t idx n inst; } // [core::slice::index::usize::get]: forward function let core_slice_index_usize_get (t : Type0) : usize → slice t → result (option t) = admit () // TODO // [core::slice::index::usize::get_mut]: forward function let core_slice_index_usize_get_mut (t : Type0) : usize → slice t → result (option t & (option t -> result (slice t))) = admit () // TODO // [core::slice::index::usize::get_unchecked]: forward function let core_slice_index_usize_get_unchecked (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) = admit () // TODO // [core::slice::index::usize::get_unchecked_mut]: forward function let core_slice_index_usize_get_unchecked_mut (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) = admit () // TODO // [core::slice::index::usize::index]: forward function let core_slice_index_usize_index (t : Type0) : usize → slice t → result t = admit () // TODO // [core::slice::index::usize::index_mut]: forward function let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result (t & (t -> result (slice t))) = admit () // TODO // Trait implementation: [core::slice::index::private_slice_index::usize] let core_slice_index_private_slice_index_SealedUsizeInst : core_slice_index_private_slice_index_Sealed usize = () // Trait implementation: [core::slice::index::usize] let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) : core_slice_index_SliceIndex usize (slice t) = { sealedInst = core_slice_index_private_slice_index_SealedUsizeInst; output = t; get = core_slice_index_usize_get t; get_mut = core_slice_index_usize_get_mut t; get_unchecked = core_slice_index_usize_get_unchecked t; get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t; index = core_slice_index_usize_index t; index_mut = core_slice_index_usize_index_mut t; } // [alloc::vec::Vec::index]: forward function let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) (self : alloc_vec_Vec t) (i : idx) : result inst.output = admit () // TODO // [alloc::vec::Vec::index_mut]: forward function let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) (self : alloc_vec_Vec t) (i : idx) : result (inst.output & (inst.output -> result (alloc_vec_Vec t))) = admit () // TODO // Trait implementation: [alloc::vec::Vec] let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : core_ops_index_Index (alloc_vec_Vec t) idx = { output = inst.output; index = alloc_vec_Vec_index t idx inst; } // Trait implementation: [alloc::vec::Vec] let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) : core_ops_index_IndexMut (alloc_vec_Vec t) idx = { indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst; index_mut = alloc_vec_Vec_index_mut t idx inst; } (*** Theorems *) let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : Lemma ( alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == alloc_vec_Vec_index_usize v i) [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] = admit() let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : Lemma ( alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i == alloc_vec_Vec_index_mut_usize v i) [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)] = admit()