From 87d6f6c7c90bf7b427397d6bd2e2c70d610678e3 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Tue, 4 Jul 2023 14:57:51 +0200 Subject: Reorganize the Lean tests --- tests/lean/.gitignore | 4 +- tests/lean/BetreeMain.lean | 1 + tests/lean/BetreeMain/Funs.lean | 1071 ++++++++++++++++++++ tests/lean/BetreeMain/Opaque.lean | 31 + tests/lean/BetreeMain/Types.lean | 62 ++ tests/lean/Constants.lean | 132 +++ tests/lean/External.lean | 1 + tests/lean/External/Funs.lean | 88 ++ tests/lean/External/Opaque.lean | 28 + tests/lean/External/Types.lean | 11 + tests/lean/Hashmap.lean | 1 + tests/lean/Hashmap/Funs.lean | 474 +++++++++ tests/lean/Hashmap/Types.lean | 17 + tests/lean/HashmapMain.lean | 1 + tests/lean/HashmapMain/Funs.lean | 557 ++++++++++ tests/lean/HashmapMain/Opaque.lean | 16 + tests/lean/HashmapMain/Types.lean | 20 + tests/lean/Loops.lean | 1 + tests/lean/Loops/Funs.lean | 624 ++++++++++++ tests/lean/Loops/Types.lean | 10 + tests/lean/Makefile | 31 +- tests/lean/NoNestedBorrows.lean | 541 ++++++++++ tests/lean/Paper.lean | 125 +++ tests/lean/PoloniusList.lean | 33 + tests/lean/Tests.lean | 9 + tests/lean/hashmap/Base/Primitives.lean | 583 ----------- tests/lean/hashmap/Hashmap.lean | 1 - tests/lean/hashmap/Hashmap/Clauses/Clauses.lean | 107 -- tests/lean/hashmap/Hashmap/Clauses/Template.lean | 108 -- tests/lean/hashmap/Hashmap/Funs.lean | 513 ---------- tests/lean/hashmap/Hashmap/Types.lean | 16 - tests/lean/hashmap/lake-manifest.json | 27 - tests/lean/hashmap/lakefile.lean | 12 - tests/lean/hashmap/lean-toolchain | 1 - tests/lean/hashmap_on_disk/.gitignore | 5 - tests/lean/hashmap_on_disk/Base/Primitives.lean | 583 ----------- tests/lean/hashmap_on_disk/HashmapMain.lean | 1 - .../HashmapMain/Clauses/Clauses.lean | 110 -- .../HashmapMain/Clauses/Template.lean | 112 -- .../hashmap_on_disk/HashmapMain/ExternalFuns.lean | 5 - tests/lean/hashmap_on_disk/HashmapMain/Funs.lean | 590 ----------- tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean | 15 - tests/lean/hashmap_on_disk/HashmapMain/Types.lean | 19 - tests/lean/hashmap_on_disk/lake-manifest.json | 27 - tests/lean/hashmap_on_disk/lakefile.lean | 12 - tests/lean/hashmap_on_disk/lean-toolchain | 1 - tests/lean/lake-manifest.json | 34 + tests/lean/lakefile.lean | 14 + tests/lean/lean-toolchain | 2 +- tests/lean/misc-constants/Base/Primitives.lean | 583 ----------- tests/lean/misc-constants/Constants.lean | 131 --- tests/lean/misc-constants/lake-manifest.json | 27 - tests/lean/misc-constants/lakefile.lean | 12 - tests/lean/misc-constants/lean-toolchain | 1 - tests/lean/misc-external/Base/Primitives.lean | 583 ----------- tests/lean/misc-external/External.lean | 1 - .../lean/misc-external/External/ExternalFuns.lean | 5 - tests/lean/misc-external/External/Funs.lean | 84 -- tests/lean/misc-external/External/Opaque.lean | 27 - tests/lean/misc-external/External/Types.lean | 10 - tests/lean/misc-external/lake-manifest.json | 27 - tests/lean/misc-external/lakefile.lean | 12 - tests/lean/misc-external/lean-toolchain | 1 - tests/lean/misc-loops/Base/Primitives.lean | 583 ----------- tests/lean/misc-loops/Loops.lean | 1 - tests/lean/misc-loops/Loops/Clauses/Clauses.lean | 205 ---- tests/lean/misc-loops/Loops/Clauses/Template.lean | 205 ---- tests/lean/misc-loops/Loops/Funs.lean | 705 ------------- tests/lean/misc-loops/Loops/Types.lean | 9 - tests/lean/misc-loops/lake-manifest.json | 27 - tests/lean/misc-loops/lakefile.lean | 12 - tests/lean/misc-loops/lean-toolchain | 1 - .../misc-no_nested_borrows/Base/Primitives.lean | 583 ----------- .../misc-no_nested_borrows/NoNestedBorrows.lean | 538 ---------- .../lean/misc-no_nested_borrows/lake-manifest.json | 27 - tests/lean/misc-no_nested_borrows/lakefile.lean | 12 - tests/lean/misc-no_nested_borrows/lean-toolchain | 1 - tests/lean/misc-paper/Base/Primitives.lean | 583 ----------- tests/lean/misc-paper/Paper.lean | 123 --- tests/lean/misc-paper/lake-manifest.json | 27 - tests/lean/misc-paper/lakefile.lean | 12 - tests/lean/misc-paper/lean-toolchain | 1 - tests/lean/misc-polonius_list/Base/Primitives.lean | 583 ----------- tests/lean/misc-polonius_list/PoloniusList.lean | 31 - tests/lean/misc-polonius_list/lake-manifest.json | 27 - tests/lean/misc-polonius_list/lakefile.lean | 12 - tests/lean/misc-polonius_list/lean-toolchain | 1 - 87 files changed, 3918 insertions(+), 8682 deletions(-) create mode 100644 tests/lean/BetreeMain.lean create mode 100644 tests/lean/BetreeMain/Funs.lean create mode 100644 tests/lean/BetreeMain/Opaque.lean create mode 100644 tests/lean/BetreeMain/Types.lean create mode 100644 tests/lean/Constants.lean create mode 100644 tests/lean/External.lean create mode 100644 tests/lean/External/Funs.lean create mode 100644 tests/lean/External/Opaque.lean create mode 100644 tests/lean/External/Types.lean create mode 100644 tests/lean/Hashmap.lean create mode 100644 tests/lean/Hashmap/Funs.lean create mode 100644 tests/lean/Hashmap/Types.lean create mode 100644 tests/lean/HashmapMain.lean create mode 100644 tests/lean/HashmapMain/Funs.lean create mode 100644 tests/lean/HashmapMain/Opaque.lean create mode 100644 tests/lean/HashmapMain/Types.lean create mode 100644 tests/lean/Loops.lean create mode 100644 tests/lean/Loops/Funs.lean create mode 100644 tests/lean/Loops/Types.lean create mode 100644 tests/lean/NoNestedBorrows.lean create mode 100644 tests/lean/Paper.lean create mode 100644 tests/lean/PoloniusList.lean create mode 100644 tests/lean/Tests.lean delete mode 100644 tests/lean/hashmap/Base/Primitives.lean delete mode 100644 tests/lean/hashmap/Hashmap.lean delete mode 100644 tests/lean/hashmap/Hashmap/Clauses/Clauses.lean delete mode 100644 tests/lean/hashmap/Hashmap/Clauses/Template.lean delete mode 100644 tests/lean/hashmap/Hashmap/Funs.lean delete mode 100644 tests/lean/hashmap/Hashmap/Types.lean delete mode 100644 tests/lean/hashmap/lake-manifest.json delete mode 100644 tests/lean/hashmap/lakefile.lean delete mode 100644 tests/lean/hashmap/lean-toolchain delete mode 100644 tests/lean/hashmap_on_disk/.gitignore delete mode 100644 tests/lean/hashmap_on_disk/Base/Primitives.lean delete mode 100644 tests/lean/hashmap_on_disk/HashmapMain.lean delete mode 100644 tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean delete mode 100644 tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean delete mode 100644 tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean delete mode 100644 tests/lean/hashmap_on_disk/HashmapMain/Funs.lean delete mode 100644 tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean delete mode 100644 tests/lean/hashmap_on_disk/HashmapMain/Types.lean delete mode 100644 tests/lean/hashmap_on_disk/lake-manifest.json delete mode 100644 tests/lean/hashmap_on_disk/lakefile.lean delete mode 100644 tests/lean/hashmap_on_disk/lean-toolchain create mode 100644 tests/lean/lake-manifest.json create mode 100644 tests/lean/lakefile.lean delete mode 100644 tests/lean/misc-constants/Base/Primitives.lean delete mode 100644 tests/lean/misc-constants/Constants.lean delete mode 100644 tests/lean/misc-constants/lake-manifest.json delete mode 100644 tests/lean/misc-constants/lakefile.lean delete mode 100644 tests/lean/misc-constants/lean-toolchain delete mode 100644 tests/lean/misc-external/Base/Primitives.lean delete mode 100644 tests/lean/misc-external/External.lean delete mode 100644 tests/lean/misc-external/External/ExternalFuns.lean delete mode 100644 tests/lean/misc-external/External/Funs.lean delete mode 100644 tests/lean/misc-external/External/Opaque.lean delete mode 100644 tests/lean/misc-external/External/Types.lean delete mode 100644 tests/lean/misc-external/lake-manifest.json delete mode 100644 tests/lean/misc-external/lakefile.lean delete mode 100644 tests/lean/misc-external/lean-toolchain delete mode 100644 tests/lean/misc-loops/Base/Primitives.lean delete mode 100644 tests/lean/misc-loops/Loops.lean delete mode 100644 tests/lean/misc-loops/Loops/Clauses/Clauses.lean delete mode 100644 tests/lean/misc-loops/Loops/Clauses/Template.lean delete mode 100644 tests/lean/misc-loops/Loops/Funs.lean delete mode 100644 tests/lean/misc-loops/Loops/Types.lean delete mode 100644 tests/lean/misc-loops/lake-manifest.json delete mode 100644 tests/lean/misc-loops/lakefile.lean delete mode 100644 tests/lean/misc-loops/lean-toolchain delete mode 100644 tests/lean/misc-no_nested_borrows/Base/Primitives.lean delete mode 100644 tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean delete mode 100644 tests/lean/misc-no_nested_borrows/lake-manifest.json delete mode 100644 tests/lean/misc-no_nested_borrows/lakefile.lean delete mode 100644 tests/lean/misc-no_nested_borrows/lean-toolchain delete mode 100644 tests/lean/misc-paper/Base/Primitives.lean delete mode 100644 tests/lean/misc-paper/Paper.lean delete mode 100644 tests/lean/misc-paper/lake-manifest.json delete mode 100644 tests/lean/misc-paper/lakefile.lean delete mode 100644 tests/lean/misc-paper/lean-toolchain delete mode 100644 tests/lean/misc-polonius_list/Base/Primitives.lean delete mode 100644 tests/lean/misc-polonius_list/PoloniusList.lean delete mode 100644 tests/lean/misc-polonius_list/lake-manifest.json delete mode 100644 tests/lean/misc-polonius_list/lakefile.lean delete mode 100644 tests/lean/misc-polonius_list/lean-toolchain (limited to 'tests') diff --git a/tests/lean/.gitignore b/tests/lean/.gitignore index e74f9899..4d1c5853 100644 --- a/tests/lean/.gitignore +++ b/tests/lean/.gitignore @@ -1,2 +1,2 @@ -*/lake-packages/ -*/build/ \ No newline at end of file +lake-packages +build \ No newline at end of file diff --git a/tests/lean/BetreeMain.lean b/tests/lean/BetreeMain.lean new file mode 100644 index 00000000..5f307877 --- /dev/null +++ b/tests/lean/BetreeMain.lean @@ -0,0 +1 @@ +import BetreeMain.Funs diff --git a/tests/lean/BetreeMain/Funs.lean b/tests/lean/BetreeMain/Funs.lean new file mode 100644 index 00000000..fb48b3a6 --- /dev/null +++ b/tests/lean/BetreeMain/Funs.lean @@ -0,0 +1,1071 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [betree_main]: function definitions +import Base +import BetreeMain.Types +import BetreeMain.ExternalFuns +open Primitives + +/- [betree_main::betree::load_internal_node] -/ +def betree_load_internal_node_fwd + (id : U64) (st : State) : + Result (State × (betree_list_t (U64 × betree_message_t))) + := + opaque_defs.betree_utils_load_internal_node_fwd id st + +/- [betree_main::betree::store_internal_node] -/ +def betree_store_internal_node_fwd + (id : U64) (content : betree_list_t (U64 × betree_message_t)) (st : State) : + Result (State × Unit) + := + do + let (st0, _) ← + opaque_defs.betree_utils_store_internal_node_fwd id content st + Result.ret (st0, ()) + +/- [betree_main::betree::load_leaf_node] -/ +def betree_load_leaf_node_fwd + (id : U64) (st : State) : Result (State × (betree_list_t (U64 × U64))) := + opaque_defs.betree_utils_load_leaf_node_fwd id st + +/- [betree_main::betree::store_leaf_node] -/ +def betree_store_leaf_node_fwd + (id : U64) (content : betree_list_t (U64 × U64)) (st : State) : + Result (State × Unit) + := + do + let (st0, _) ← opaque_defs.betree_utils_store_leaf_node_fwd id content st + Result.ret (st0, ()) + +/- [betree_main::betree::fresh_node_id] -/ +def betree_fresh_node_id_fwd (counter : U64) : Result U64 := + do + let _ ← counter + (U64.ofInt 1 (by intlit)) + Result.ret counter + +/- [betree_main::betree::fresh_node_id] -/ +def betree_fresh_node_id_back (counter : U64) : Result U64 := + counter + (U64.ofInt 1 (by intlit)) + +/- [betree_main::betree::NodeIdCounter::{0}::new] -/ +def betree_node_id_counter_new_fwd : Result betree_node_id_counter_t := + Result.ret + { betree_node_id_counter_next_node_id := (U64.ofInt 0 (by intlit)) } + +/- [betree_main::betree::NodeIdCounter::{0}::fresh_id] -/ +def betree_node_id_counter_fresh_id_fwd + (self : betree_node_id_counter_t) : Result U64 := + do + let _ ← self.betree_node_id_counter_next_node_id + + (U64.ofInt 1 (by intlit)) + Result.ret self.betree_node_id_counter_next_node_id + +/- [betree_main::betree::NodeIdCounter::{0}::fresh_id] -/ +def betree_node_id_counter_fresh_id_back + (self : betree_node_id_counter_t) : Result betree_node_id_counter_t := + do + let i ← self.betree_node_id_counter_next_node_id + + (U64.ofInt 1 (by intlit)) + Result.ret { betree_node_id_counter_next_node_id := i } + +/- [core::num::u64::{10}::MAX] -/ +def core_num_u64_max_body : Result U64 := + Result.ret (U64.ofInt 18446744073709551615 (by intlit)) +def core_num_u64_max_c : U64 := eval_global core_num_u64_max_body (by simp) + +/- [betree_main::betree::upsert_update] -/ +def betree_upsert_update_fwd + (prev : Option U64) (st : betree_upsert_fun_state_t) : Result U64 := + match h: prev with + | Option.none => + match h: st with + | betree_upsert_fun_state_t.Add v => Result.ret v + | betree_upsert_fun_state_t.Sub i => Result.ret (U64.ofInt 0 (by intlit)) + | Option.some prev0 => + match h: st with + | betree_upsert_fun_state_t.Add v => + do + let margin ← core_num_u64_max_c - prev0 + if margin >= v + then prev0 + v + else Result.ret core_num_u64_max_c + | betree_upsert_fun_state_t.Sub v => + if prev0 >= v + then prev0 - v + else Result.ret (U64.ofInt 0 (by intlit)) + +/- [betree_main::betree::List::{1}::len] -/ +divergent def betree_list_len_fwd + (T : Type) (self : betree_list_t T) : Result U64 := + match h: self with + | betree_list_t.Cons t tl => + do + let i ← betree_list_len_fwd T tl + (U64.ofInt 1 (by intlit)) + i + | betree_list_t.Nil => Result.ret (U64.ofInt 0 (by intlit)) + +/- [betree_main::betree::List::{1}::split_at] -/ +divergent def betree_list_split_at_fwd + (T : Type) (self : betree_list_t T) (n : U64) : + Result ((betree_list_t T) × (betree_list_t T)) + := + if n = (U64.ofInt 0 (by intlit)) + then Result.ret (betree_list_t.Nil, self) + else + match h: self with + | betree_list_t.Cons hd tl => + do + let i ← n - (U64.ofInt 1 (by intlit)) + let p ← betree_list_split_at_fwd T tl i + let (ls0, ls1) := p + let l := ls0 + Result.ret (betree_list_t.Cons hd l, ls1) + | betree_list_t.Nil => Result.fail Error.panic + +/- [betree_main::betree::List::{1}::push_front] -/ +def betree_list_push_front_fwd_back + (T : Type) (self : betree_list_t T) (x : T) : Result (betree_list_t T) := + let tl := mem_replace_fwd (betree_list_t T) self betree_list_t.Nil + let l := tl + Result.ret (betree_list_t.Cons x l) + +/- [betree_main::betree::List::{1}::pop_front] -/ +def betree_list_pop_front_fwd (T : Type) (self : betree_list_t T) : Result T := + let ls := mem_replace_fwd (betree_list_t T) self betree_list_t.Nil + match h: ls with + | betree_list_t.Cons x tl => Result.ret x + | betree_list_t.Nil => Result.fail Error.panic + +/- [betree_main::betree::List::{1}::pop_front] -/ +def betree_list_pop_front_back + (T : Type) (self : betree_list_t T) : Result (betree_list_t T) := + let ls := mem_replace_fwd (betree_list_t T) self betree_list_t.Nil + match h: ls with + | betree_list_t.Cons x tl => Result.ret tl + | betree_list_t.Nil => Result.fail Error.panic + +/- [betree_main::betree::List::{1}::hd] -/ +def betree_list_hd_fwd (T : Type) (self : betree_list_t T) : Result T := + match h: self with + | betree_list_t.Cons hd l => Result.ret hd + | betree_list_t.Nil => Result.fail Error.panic + +/- [betree_main::betree::List::{2}::head_has_key] -/ +def betree_list_head_has_key_fwd + (T : Type) (self : betree_list_t (U64 × T)) (key : U64) : Result Bool := + match h: self with + | betree_list_t.Cons hd l => let (i, _) := hd + Result.ret (i = key) + | betree_list_t.Nil => Result.ret false + +/- [betree_main::betree::List::{2}::partition_at_pivot] -/ +divergent def betree_list_partition_at_pivot_fwd + (T : Type) (self : betree_list_t (U64 × T)) (pivot : U64) : + Result ((betree_list_t (U64 × T)) × (betree_list_t (U64 × T))) + := + match h: self with + | betree_list_t.Cons hd tl => + let (i, t) := hd + if i >= pivot + then Result.ret (betree_list_t.Nil, betree_list_t.Cons (i, t) tl) + else + do + let p ← betree_list_partition_at_pivot_fwd T tl pivot + let (ls0, ls1) := p + let l := ls0 + Result.ret (betree_list_t.Cons (i, t) l, ls1) + | betree_list_t.Nil => Result.ret (betree_list_t.Nil, betree_list_t.Nil) + +/- [betree_main::betree::Leaf::{3}::split] -/ +def betree_leaf_split_fwd + (self : betree_leaf_t) (content : betree_list_t (U64 × U64)) + (params : betree_params_t) (node_id_cnt : betree_node_id_counter_t) + (st : State) : + Result (State × betree_internal_t) + := + do + let p ← + betree_list_split_at_fwd (U64 × U64) content + params.betree_params_split_size + let (content0, content1) := p + let p0 ← betree_list_hd_fwd (U64 × U64) content1 + let (pivot, _) := p0 + let id0 ← betree_node_id_counter_fresh_id_fwd node_id_cnt + let node_id_cnt0 ← betree_node_id_counter_fresh_id_back node_id_cnt + let id1 ← betree_node_id_counter_fresh_id_fwd node_id_cnt0 + let (st0, _) ← betree_store_leaf_node_fwd id0 content0 st + let (st1, _) ← betree_store_leaf_node_fwd id1 content1 st0 + let n := betree_node_t.Leaf + { + betree_leaf_id := id0, + betree_leaf_size := params.betree_params_split_size + } + let n0 := betree_node_t.Leaf + { + betree_leaf_id := id1, + betree_leaf_size := params.betree_params_split_size + } + Result.ret (st1, mkbetree_internal_t self.betree_leaf_id pivot n n0) + +/- [betree_main::betree::Leaf::{3}::split] -/ +def betree_leaf_split_back + (self : betree_leaf_t) (content : betree_list_t (U64 × U64)) + (params : betree_params_t) (node_id_cnt : betree_node_id_counter_t) + (st : State) : + Result betree_node_id_counter_t + := + do + let p ← + betree_list_split_at_fwd (U64 × U64) content + params.betree_params_split_size + let (content0, content1) := p + let _ ← betree_list_hd_fwd (U64 × U64) content1 + let id0 ← betree_node_id_counter_fresh_id_fwd node_id_cnt + let node_id_cnt0 ← betree_node_id_counter_fresh_id_back node_id_cnt + let id1 ← betree_node_id_counter_fresh_id_fwd node_id_cnt0 + let (st0, _) ← betree_store_leaf_node_fwd id0 content0 st + let _ ← betree_store_leaf_node_fwd id1 content1 st0 + betree_node_id_counter_fresh_id_back node_id_cnt0 + +/- [betree_main::betree::Node::{5}::lookup_in_bindings] -/ +divergent def betree_node_lookup_in_bindings_fwd + (key : U64) (bindings : betree_list_t (U64 × U64)) : Result (Option U64) := + match h: bindings with + | betree_list_t.Cons hd tl => + let (i, i0) := hd + if i = key + then Result.ret (Option.some i0) + else + if i > key + then Result.ret Option.none + else betree_node_lookup_in_bindings_fwd key tl + | betree_list_t.Nil => Result.ret Option.none + +/- [betree_main::betree::Node::{5}::lookup_first_message_for_key] -/ +divergent def betree_node_lookup_first_message_for_key_fwd + (key : U64) (msgs : betree_list_t (U64 × betree_message_t)) : + Result (betree_list_t (U64 × betree_message_t)) + := + match h: msgs with + | betree_list_t.Cons x next_msgs => + let (i, m) := x + if i >= key + then Result.ret (betree_list_t.Cons (i, m) next_msgs) + else betree_node_lookup_first_message_for_key_fwd key next_msgs + | betree_list_t.Nil => Result.ret betree_list_t.Nil + +/- [betree_main::betree::Node::{5}::lookup_first_message_for_key] -/ +divergent def betree_node_lookup_first_message_for_key_back + (key : U64) (msgs : betree_list_t (U64 × betree_message_t)) + (ret0 : betree_list_t (U64 × betree_message_t)) : + Result (betree_list_t (U64 × betree_message_t)) + := + match h: msgs with + | betree_list_t.Cons x next_msgs => + let (i, m) := x + if i >= key + then Result.ret ret0 + else + do + let next_msgs0 ← + betree_node_lookup_first_message_for_key_back key next_msgs ret0 + Result.ret (betree_list_t.Cons (i, m) next_msgs0) + | betree_list_t.Nil => Result.ret ret0 + +/- [betree_main::betree::Node::{5}::apply_upserts] -/ +divergent def betree_node_apply_upserts_fwd + (msgs : betree_list_t (U64 × betree_message_t)) (prev : Option U64) + (key : U64) (st : State) : + Result (State × U64) + := + do + let b ← betree_list_head_has_key_fwd betree_message_t msgs key + if b + then + do + let msg ← betree_list_pop_front_fwd (U64 × betree_message_t) msgs + let (_, m) := msg + match h: m with + | betree_message_t.Insert i => Result.fail Error.panic + | betree_message_t.Delete => Result.fail Error.panic + | betree_message_t.Upsert s => + do + let v ← betree_upsert_update_fwd prev s + let msgs0 ← + betree_list_pop_front_back (U64 × betree_message_t) msgs + betree_node_apply_upserts_fwd msgs0 (Option.some v) key st + else + do + let (st0, v) ← opaque_defs.core_option_option_unwrap_fwd U64 prev st + let _ ← + betree_list_push_front_fwd_back (U64 × betree_message_t) msgs (key, + betree_message_t.Insert v) + Result.ret (st0, v) + +/- [betree_main::betree::Node::{5}::apply_upserts] -/ +divergent def betree_node_apply_upserts_back + (msgs : betree_list_t (U64 × betree_message_t)) (prev : Option U64) + (key : U64) (st : State) : + Result (betree_list_t (U64 × betree_message_t)) + := + do + let b ← betree_list_head_has_key_fwd betree_message_t msgs key + if b + then + do + let msg ← betree_list_pop_front_fwd (U64 × betree_message_t) msgs + let (_, m) := msg + match h: m with + | betree_message_t.Insert i => Result.fail Error.panic + | betree_message_t.Delete => Result.fail Error.panic + | betree_message_t.Upsert s => + do + let v ← betree_upsert_update_fwd prev s + let msgs0 ← + betree_list_pop_front_back (U64 × betree_message_t) msgs + betree_node_apply_upserts_back msgs0 (Option.some v) key st + else + do + let (_, v) ← opaque_defs.core_option_option_unwrap_fwd U64 prev st + betree_list_push_front_fwd_back (U64 × betree_message_t) msgs (key, + betree_message_t.Insert v) + +/- [betree_main::betree::Node::{5}::lookup] -/ +mutual divergent def betree_node_lookup_fwd + (self : betree_node_t) (key : U64) (st : State) : + Result (State × (Option U64)) + := + match h: self with + | betree_node_t.Internal node => + do + let (mkbetree_internal_t i i0 n n0) := node + let (st0, msgs) ← betree_load_internal_node_fwd i st + let pending ← betree_node_lookup_first_message_for_key_fwd key msgs + match h: pending with + | betree_list_t.Cons p l => + let (k, msg) := p + if k != key + then + do + let (st1, opt) ← + betree_internal_lookup_in_children_fwd (mkbetree_internal_t i i0 + n n0) key st0 + let _ ← + betree_node_lookup_first_message_for_key_back key msgs + (betree_list_t.Cons (k, msg) l) + Result.ret (st1, opt) + else + match h: msg with + | betree_message_t.Insert v => + do + let _ ← + betree_node_lookup_first_message_for_key_back key msgs + (betree_list_t.Cons (k, betree_message_t.Insert v) l) + Result.ret (st0, Option.some v) + | betree_message_t.Delete => + do + let _ ← + betree_node_lookup_first_message_for_key_back key msgs + (betree_list_t.Cons (k, betree_message_t.Delete) l) + Result.ret (st0, Option.none) + | betree_message_t.Upsert ufs => + do + let (st1, v) ← + betree_internal_lookup_in_children_fwd (mkbetree_internal_t i + i0 n n0) key st0 + let (st2, v0) ← + betree_node_apply_upserts_fwd (betree_list_t.Cons (k, + betree_message_t.Upsert ufs) l) v key st1 + let node0 ← + betree_internal_lookup_in_children_back (mkbetree_internal_t i + i0 n n0) key st0 + let (mkbetree_internal_t i1 _ _ _) := node0 + let pending0 ← + betree_node_apply_upserts_back (betree_list_t.Cons (k, + betree_message_t.Upsert ufs) l) v key st1 + let msgs0 ← + betree_node_lookup_first_message_for_key_back key msgs pending0 + let (st3, _) ← betree_store_internal_node_fwd i1 msgs0 st2 + Result.ret (st3, Option.some v0) + | betree_list_t.Nil => + do + let (st1, opt) ← + betree_internal_lookup_in_children_fwd (mkbetree_internal_t i i0 n + n0) key st0 + let _ ← + betree_node_lookup_first_message_for_key_back key msgs + betree_list_t.Nil + Result.ret (st1, opt) + | betree_node_t.Leaf node => + do + let (st0, bindings) ← betree_load_leaf_node_fwd node.betree_leaf_id st + let opt ← betree_node_lookup_in_bindings_fwd key bindings + Result.ret (st0, opt) + +/- [betree_main::betree::Node::{5}::lookup] -/ +divergent def betree_node_lookup_back + (self : betree_node_t) (key : U64) (st : State) : Result betree_node_t := + match h: self with + | betree_node_t.Internal node => + do + let (mkbetree_internal_t i i0 n n0) := node + let (st0, msgs) ← betree_load_internal_node_fwd i st + let pending ← betree_node_lookup_first_message_for_key_fwd key msgs + match h: pending with + | betree_list_t.Cons p l => + let (k, msg) := p + if k != key + then + do + let _ ← + betree_node_lookup_first_message_for_key_back key msgs + (betree_list_t.Cons (k, msg) l) + let node0 ← + betree_internal_lookup_in_children_back (mkbetree_internal_t i i0 + n n0) key st0 + Result.ret (betree_node_t.Internal node0) + else + match h: msg with + | betree_message_t.Insert v => + do + let _ ← + betree_node_lookup_first_message_for_key_back key msgs + (betree_list_t.Cons (k, betree_message_t.Insert v) l) + Result.ret (betree_node_t.Internal (mkbetree_internal_t i i0 n + n0)) + | betree_message_t.Delete => + do + let _ ← + betree_node_lookup_first_message_for_key_back key msgs + (betree_list_t.Cons (k, betree_message_t.Delete) l) + Result.ret (betree_node_t.Internal (mkbetree_internal_t i i0 n + n0)) + | betree_message_t.Upsert ufs => + do + let (st1, v) ← + betree_internal_lookup_in_children_fwd (mkbetree_internal_t i + i0 n n0) key st0 + let (st2, _) ← + betree_node_apply_upserts_fwd (betree_list_t.Cons (k, + betree_message_t.Upsert ufs) l) v key st1 + let node0 ← + betree_internal_lookup_in_children_back (mkbetree_internal_t i + i0 n n0) key st0 + let (mkbetree_internal_t i1 i2 n1 n2) := node0 + let pending0 ← + betree_node_apply_upserts_back (betree_list_t.Cons (k, + betree_message_t.Upsert ufs) l) v key st1 + let msgs0 ← + betree_node_lookup_first_message_for_key_back key msgs pending0 + let _ ← betree_store_internal_node_fwd i1 msgs0 st2 + Result.ret (betree_node_t.Internal (mkbetree_internal_t i1 i2 n1 + n2)) + | betree_list_t.Nil => + do + let _ ← + betree_node_lookup_first_message_for_key_back key msgs + betree_list_t.Nil + let node0 ← + betree_internal_lookup_in_children_back (mkbetree_internal_t i i0 n + n0) key st0 + Result.ret (betree_node_t.Internal node0) + | betree_node_t.Leaf node => + do + let (_, bindings) ← betree_load_leaf_node_fwd node.betree_leaf_id st + let _ ← betree_node_lookup_in_bindings_fwd key bindings + Result.ret (betree_node_t.Leaf node) + +/- [betree_main::betree::Internal::{4}::lookup_in_children] -/ +divergent def betree_internal_lookup_in_children_fwd + (self : betree_internal_t) (key : U64) (st : State) : + Result (State × (Option U64)) + := + let (mkbetree_internal_t _ i n n0) := self + if key < i + then betree_node_lookup_fwd n key st + else betree_node_lookup_fwd n0 key st + +/- [betree_main::betree::Internal::{4}::lookup_in_children] -/ +divergent def betree_internal_lookup_in_children_back + (self : betree_internal_t) (key : U64) (st : State) : + Result betree_internal_t + := + let (mkbetree_internal_t i i0 n n0) := self + if key < i0 + then + do + let n1 ← betree_node_lookup_back n key st + Result.ret (mkbetree_internal_t i i0 n1 n0) + else + do + let n1 ← betree_node_lookup_back n0 key st + Result.ret (mkbetree_internal_t i i0 n n1) + +end + +/- [betree_main::betree::Node::{5}::lookup_mut_in_bindings] -/ +divergent def betree_node_lookup_mut_in_bindings_fwd + (key : U64) (bindings : betree_list_t (U64 × U64)) : + Result (betree_list_t (U64 × U64)) + := + match h: bindings with + | betree_list_t.Cons hd tl => + let (i, i0) := hd + if i >= key + then Result.ret (betree_list_t.Cons (i, i0) tl) + else betree_node_lookup_mut_in_bindings_fwd key tl + | betree_list_t.Nil => Result.ret betree_list_t.Nil + +/- [betree_main::betree::Node::{5}::lookup_mut_in_bindings] -/ +divergent def betree_node_lookup_mut_in_bindings_back + (key : U64) (bindings : betree_list_t (U64 × U64)) + (ret0 : betree_list_t (U64 × U64)) : + Result (betree_list_t (U64 × U64)) + := + match h: bindings with + | betree_list_t.Cons hd tl => + let (i, i0) := hd + if i >= key + then Result.ret ret0 + else + do + let tl0 ← betree_node_lookup_mut_in_bindings_back key tl ret0 + Result.ret (betree_list_t.Cons (i, i0) tl0) + | betree_list_t.Nil => Result.ret ret0 + +/- [betree_main::betree::Node::{5}::apply_to_leaf] -/ +def betree_node_apply_to_leaf_fwd_back + (bindings : betree_list_t (U64 × U64)) (key : U64) + (new_msg : betree_message_t) : + Result (betree_list_t (U64 × U64)) + := + do + let bindings0 ← betree_node_lookup_mut_in_bindings_fwd key bindings + let b ← betree_list_head_has_key_fwd U64 bindings0 key + if b + then + do + let hd ← betree_list_pop_front_fwd (U64 × U64) bindings0 + match h: new_msg with + | betree_message_t.Insert v => + do + let bindings1 ← betree_list_pop_front_back (U64 × U64) bindings0 + let bindings2 ← + betree_list_push_front_fwd_back (U64 × U64) bindings1 (key, v) + betree_node_lookup_mut_in_bindings_back key bindings bindings2 + | betree_message_t.Delete => + do + let bindings1 ← betree_list_pop_front_back (U64 × U64) bindings0 + betree_node_lookup_mut_in_bindings_back key bindings bindings1 + | betree_message_t.Upsert s => + do + let (_, i) := hd + let v ← betree_upsert_update_fwd (Option.some i) s + let bindings1 ← betree_list_pop_front_back (U64 × U64) bindings0 + let bindings2 ← + betree_list_push_front_fwd_back (U64 × U64) bindings1 (key, v) + betree_node_lookup_mut_in_bindings_back key bindings bindings2 + else + match h: new_msg with + | betree_message_t.Insert v => + do + let bindings1 ← + betree_list_push_front_fwd_back (U64 × U64) bindings0 (key, v) + betree_node_lookup_mut_in_bindings_back key bindings bindings1 + | betree_message_t.Delete => + betree_node_lookup_mut_in_bindings_back key bindings bindings0 + | betree_message_t.Upsert s => + do + let v ← betree_upsert_update_fwd Option.none s + let bindings1 ← + betree_list_push_front_fwd_back (U64 × U64) bindings0 (key, v) + betree_node_lookup_mut_in_bindings_back key bindings bindings1 + +/- [betree_main::betree::Node::{5}::apply_messages_to_leaf] -/ +divergent def betree_node_apply_messages_to_leaf_fwd_back + (bindings : betree_list_t (U64 × U64)) + (new_msgs : betree_list_t (U64 × betree_message_t)) : + Result (betree_list_t (U64 × U64)) + := + match h: new_msgs with + | betree_list_t.Cons new_msg new_msgs_tl => + do + let (i, m) := new_msg + let bindings0 ← betree_node_apply_to_leaf_fwd_back bindings i m + betree_node_apply_messages_to_leaf_fwd_back bindings0 new_msgs_tl + | betree_list_t.Nil => Result.ret bindings + +/- [betree_main::betree::Node::{5}::filter_messages_for_key] -/ +divergent def betree_node_filter_messages_for_key_fwd_back + (key : U64) (msgs : betree_list_t (U64 × betree_message_t)) : + Result (betree_list_t (U64 × betree_message_t)) + := + match h: msgs with + | betree_list_t.Cons p l => + let (k, m) := p + if k = key + then + do + let msgs0 ← + betree_list_pop_front_back (U64 × betree_message_t) + (betree_list_t.Cons (k, m) l) + betree_node_filter_messages_for_key_fwd_back key msgs0 + else Result.ret (betree_list_t.Cons (k, m) l) + | betree_list_t.Nil => Result.ret betree_list_t.Nil + +/- [betree_main::betree::Node::{5}::lookup_first_message_after_key] -/ +divergent def betree_node_lookup_first_message_after_key_fwd + (key : U64) (msgs : betree_list_t (U64 × betree_message_t)) : + Result (betree_list_t (U64 × betree_message_t)) + := + match h: msgs with + | betree_list_t.Cons p next_msgs => + let (k, m) := p + if k = key + then betree_node_lookup_first_message_after_key_fwd key next_msgs + else Result.ret (betree_list_t.Cons (k, m) next_msgs) + | betree_list_t.Nil => Result.ret betree_list_t.Nil + +/- [betree_main::betree::Node::{5}::lookup_first_message_after_key] -/ +divergent def betree_node_lookup_first_message_after_key_back + (key : U64) (msgs : betree_list_t (U64 × betree_message_t)) + (ret0 : betree_list_t (U64 × betree_message_t)) : + Result (betree_list_t (U64 × betree_message_t)) + := + match h: msgs with + | betree_list_t.Cons p next_msgs => + let (k, m) := p + if k = key + then + do + let next_msgs0 ← + betree_node_lookup_first_message_after_key_back key next_msgs ret0 + Result.ret (betree_list_t.Cons (k, m) next_msgs0) + else Result.ret ret0 + | betree_list_t.Nil => Result.ret ret0 + +/- [betree_main::betree::Node::{5}::apply_to_internal] -/ +def betree_node_apply_to_internal_fwd_back + (msgs : betree_list_t (U64 × betree_message_t)) (key : U64) + (new_msg : betree_message_t) : + Result (betree_list_t (U64 × betree_message_t)) + := + do + let msgs0 ← betree_node_lookup_first_message_for_key_fwd key msgs + let b ← betree_list_head_has_key_fwd betree_message_t msgs0 key + if b + then + match h: new_msg with + | betree_message_t.Insert i => + do + let msgs1 ← betree_node_filter_messages_for_key_fwd_back key msgs0 + let msgs2 ← + betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1 + (key, betree_message_t.Insert i) + betree_node_lookup_first_message_for_key_back key msgs msgs2 + | betree_message_t.Delete => + do + let msgs1 ← betree_node_filter_messages_for_key_fwd_back key msgs0 + let msgs2 ← + betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1 + (key, betree_message_t.Delete) + betree_node_lookup_first_message_for_key_back key msgs msgs2 + | betree_message_t.Upsert s => + do + let p ← betree_list_hd_fwd (U64 × betree_message_t) msgs0 + let (_, m) := p + match h: m with + | betree_message_t.Insert prev => + do + let v ← betree_upsert_update_fwd (Option.some prev) s + let msgs1 ← + betree_list_pop_front_back (U64 × betree_message_t) msgs0 + let msgs2 ← + betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1 + (key, betree_message_t.Insert v) + betree_node_lookup_first_message_for_key_back key msgs msgs2 + | betree_message_t.Delete => + do + let v ← betree_upsert_update_fwd Option.none s + let msgs1 ← + betree_list_pop_front_back (U64 × betree_message_t) msgs0 + let msgs2 ← + betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1 + (key, betree_message_t.Insert v) + betree_node_lookup_first_message_for_key_back key msgs msgs2 + | betree_message_t.Upsert ufs => + do + let msgs1 ← + betree_node_lookup_first_message_after_key_fwd key msgs0 + let msgs2 ← + betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1 + (key, betree_message_t.Upsert s) + let msgs3 ← + betree_node_lookup_first_message_after_key_back key msgs0 msgs2 + betree_node_lookup_first_message_for_key_back key msgs msgs3 + else + do + let msgs1 ← + betree_list_push_front_fwd_back (U64 × betree_message_t) msgs0 (key, + new_msg) + betree_node_lookup_first_message_for_key_back key msgs msgs1 + +/- [betree_main::betree::Node::{5}::apply_messages_to_internal] -/ +divergent def betree_node_apply_messages_to_internal_fwd_back + (msgs : betree_list_t (U64 × betree_message_t)) + (new_msgs : betree_list_t (U64 × betree_message_t)) : + Result (betree_list_t (U64 × betree_message_t)) + := + match h: new_msgs with + | betree_list_t.Cons new_msg new_msgs_tl => + do + let (i, m) := new_msg + let msgs0 ← betree_node_apply_to_internal_fwd_back msgs i m + betree_node_apply_messages_to_internal_fwd_back msgs0 new_msgs_tl + | betree_list_t.Nil => Result.ret msgs + +/- [betree_main::betree::Node::{5}::apply_messages] -/ +mutual divergent def betree_node_apply_messages_fwd + (self : betree_node_t) (params : betree_params_t) + (node_id_cnt : betree_node_id_counter_t) + (msgs : betree_list_t (U64 × betree_message_t)) (st : State) : + Result (State × Unit) + := + match h: self with + | betree_node_t.Internal node => + do + let (mkbetree_internal_t i i0 n n0) := node + let (st0, content) ← betree_load_internal_node_fwd i st + let content0 ← + betree_node_apply_messages_to_internal_fwd_back content msgs + let num_msgs ← betree_list_len_fwd (U64 × betree_message_t) content0 + if num_msgs >= params.betree_params_min_flush_size + then + do + let (st1, content1) ← + betree_internal_flush_fwd (mkbetree_internal_t i i0 n n0) params + node_id_cnt content0 st0 + let (node0, _) ← + betree_internal_flush_back (mkbetree_internal_t i i0 n n0) params + node_id_cnt content0 st0 + let (mkbetree_internal_t i1 _ _ _) := node0 + let (st2, _) ← betree_store_internal_node_fwd i1 content1 st1 + Result.ret (st2, ()) + else + do + let (st1, _) ← betree_store_internal_node_fwd i content0 st0 + Result.ret (st1, ()) + | betree_node_t.Leaf node => + do + let (st0, content) ← betree_load_leaf_node_fwd node.betree_leaf_id st + let content0 ← betree_node_apply_messages_to_leaf_fwd_back content msgs + let len ← betree_list_len_fwd (U64 × U64) content0 + let i ← (U64.ofInt 2 (by intlit)) * params.betree_params_split_size + if len >= i + then + do + let (st1, _) ← + betree_leaf_split_fwd node content0 params node_id_cnt st0 + let (st2, _) ← + betree_store_leaf_node_fwd node.betree_leaf_id betree_list_t.Nil + st1 + Result.ret (st2, ()) + else + do + let (st1, _) ← + betree_store_leaf_node_fwd node.betree_leaf_id content0 st0 + Result.ret (st1, ()) + +/- [betree_main::betree::Node::{5}::apply_messages] -/ +divergent def betree_node_apply_messages_back + (self : betree_node_t) (params : betree_params_t) + (node_id_cnt : betree_node_id_counter_t) + (msgs : betree_list_t (U64 × betree_message_t)) (st : State) : + Result (betree_node_t × betree_node_id_counter_t) + := + match h: self with + | betree_node_t.Internal node => + do + let (mkbetree_internal_t i i0 n n0) := node + let (st0, content) ← betree_load_internal_node_fwd i st + let content0 ← + betree_node_apply_messages_to_internal_fwd_back content msgs + let num_msgs ← betree_list_len_fwd (U64 × betree_message_t) content0 + if num_msgs >= params.betree_params_min_flush_size + then + do + let (st1, content1) ← + betree_internal_flush_fwd (mkbetree_internal_t i i0 n n0) params + node_id_cnt content0 st0 + let (node0, node_id_cnt0) ← + betree_internal_flush_back (mkbetree_internal_t i i0 n n0) params + node_id_cnt content0 st0 + let (mkbetree_internal_t i1 i2 n1 n2) := node0 + let _ ← betree_store_internal_node_fwd i1 content1 st1 + Result.ret (betree_node_t.Internal (mkbetree_internal_t i1 i2 n1 n2), + node_id_cnt0) + else + do + let _ ← betree_store_internal_node_fwd i content0 st0 + Result.ret (betree_node_t.Internal (mkbetree_internal_t i i0 n n0), + node_id_cnt) + | betree_node_t.Leaf node => + do + let (st0, content) ← betree_load_leaf_node_fwd node.betree_leaf_id st + let content0 ← betree_node_apply_messages_to_leaf_fwd_back content msgs + let len ← betree_list_len_fwd (U64 × U64) content0 + let i ← (U64.ofInt 2 (by intlit)) * params.betree_params_split_size + if len >= i + then + do + let (st1, new_node) ← + betree_leaf_split_fwd node content0 params node_id_cnt st0 + let _ ← + betree_store_leaf_node_fwd node.betree_leaf_id betree_list_t.Nil + st1 + let node_id_cnt0 ← + betree_leaf_split_back node content0 params node_id_cnt st0 + Result.ret (betree_node_t.Internal new_node, node_id_cnt0) + else + do + let _ ← betree_store_leaf_node_fwd node.betree_leaf_id content0 st0 + Result.ret (betree_node_t.Leaf { node with betree_leaf_size := len }, + node_id_cnt) + +/- [betree_main::betree::Internal::{4}::flush] -/ +divergent def betree_internal_flush_fwd + (self : betree_internal_t) (params : betree_params_t) + (node_id_cnt : betree_node_id_counter_t) + (content : betree_list_t (U64 × betree_message_t)) (st : State) : + Result (State × (betree_list_t (U64 × betree_message_t))) + := + do + let (mkbetree_internal_t _ i n n0) := self + let p ← betree_list_partition_at_pivot_fwd betree_message_t content i + let (msgs_left, msgs_right) := p + let len_left ← betree_list_len_fwd (U64 × betree_message_t) msgs_left + if len_left >= params.betree_params_min_flush_size + then + do + let (st0, _) ← + betree_node_apply_messages_fwd n params node_id_cnt msgs_left st + let (_, node_id_cnt0) ← + betree_node_apply_messages_back n params node_id_cnt msgs_left st + let len_right ← + betree_list_len_fwd (U64 × betree_message_t) msgs_right + if len_right >= params.betree_params_min_flush_size + then + do + let (st1, _) ← + betree_node_apply_messages_fwd n0 params node_id_cnt0 msgs_right + st0 + let _ ← + betree_node_apply_messages_back n0 params node_id_cnt0 msgs_right + st0 + Result.ret (st1, betree_list_t.Nil) + else Result.ret (st0, msgs_right) + else + do + let (st0, _) ← + betree_node_apply_messages_fwd n0 params node_id_cnt msgs_right st + let _ ← + betree_node_apply_messages_back n0 params node_id_cnt msgs_right st + Result.ret (st0, msgs_left) + +/- [betree_main::betree::Internal::{4}::flush] -/ +divergent def betree_internal_flush_back + (self : betree_internal_t) (params : betree_params_t) + (node_id_cnt : betree_node_id_counter_t) + (content : betree_list_t (U64 × betree_message_t)) (st : State) : + Result (betree_internal_t × betree_node_id_counter_t) + := + do + let (mkbetree_internal_t i i0 n n0) := self + let p ← betree_list_partition_at_pivot_fwd betree_message_t content i0 + let (msgs_left, msgs_right) := p + let len_left ← betree_list_len_fwd (U64 × betree_message_t) msgs_left + if len_left >= params.betree_params_min_flush_size + then + do + let (st0, _) ← + betree_node_apply_messages_fwd n params node_id_cnt msgs_left st + let (n1, node_id_cnt0) ← + betree_node_apply_messages_back n params node_id_cnt msgs_left st + let len_right ← + betree_list_len_fwd (U64 × betree_message_t) msgs_right + if len_right >= params.betree_params_min_flush_size + then + do + let (n2, node_id_cnt1) ← + betree_node_apply_messages_back n0 params node_id_cnt0 msgs_right + st0 + Result.ret (mkbetree_internal_t i i0 n1 n2, node_id_cnt1) + else Result.ret (mkbetree_internal_t i i0 n1 n0, node_id_cnt0) + else + do + let (n1, node_id_cnt0) ← + betree_node_apply_messages_back n0 params node_id_cnt msgs_right st + Result.ret (mkbetree_internal_t i i0 n n1, node_id_cnt0) + +end + +/- [betree_main::betree::Node::{5}::apply] -/ +def betree_node_apply_fwd + (self : betree_node_t) (params : betree_params_t) + (node_id_cnt : betree_node_id_counter_t) (key : U64) + (new_msg : betree_message_t) (st : State) : + Result (State × Unit) + := + do + let l := betree_list_t.Nil + let (st0, _) ← + betree_node_apply_messages_fwd self params node_id_cnt + (betree_list_t.Cons (key, new_msg) l) st + let _ ← + betree_node_apply_messages_back self params node_id_cnt + (betree_list_t.Cons (key, new_msg) l) st + Result.ret (st0, ()) + +/- [betree_main::betree::Node::{5}::apply] -/ +def betree_node_apply_back + (self : betree_node_t) (params : betree_params_t) + (node_id_cnt : betree_node_id_counter_t) (key : U64) + (new_msg : betree_message_t) (st : State) : + Result (betree_node_t × betree_node_id_counter_t) + := + let l := betree_list_t.Nil + betree_node_apply_messages_back self params node_id_cnt (betree_list_t.Cons + (key, new_msg) l) st + +/- [betree_main::betree::BeTree::{6}::new] -/ +def betree_be_tree_new_fwd + (min_flush_size : U64) (split_size : U64) (st : State) : + Result (State × betree_be_tree_t) + := + do + let node_id_cnt ← betree_node_id_counter_new_fwd + let id ← betree_node_id_counter_fresh_id_fwd node_id_cnt + let (st0, _) ← betree_store_leaf_node_fwd id betree_list_t.Nil st + let node_id_cnt0 ← betree_node_id_counter_fresh_id_back node_id_cnt + Result.ret (st0, + { + betree_be_tree_params := + { + betree_params_min_flush_size := min_flush_size, + betree_params_split_size := split_size + }, + betree_be_tree_node_id_cnt := node_id_cnt0, + betree_be_tree_root := + (betree_node_t.Leaf + { + betree_leaf_id := id, + betree_leaf_size := (U64.ofInt 0 (by intlit)) + }) + }) + +/- [betree_main::betree::BeTree::{6}::apply] -/ +def betree_be_tree_apply_fwd + (self : betree_be_tree_t) (key : U64) (msg : betree_message_t) (st : State) : + Result (State × Unit) + := + do + let (st0, _) ← + betree_node_apply_fwd self.betree_be_tree_root self.betree_be_tree_params + self.betree_be_tree_node_id_cnt key msg st + let _ ← + betree_node_apply_back self.betree_be_tree_root + self.betree_be_tree_params self.betree_be_tree_node_id_cnt key msg st + Result.ret (st0, ()) + +/- [betree_main::betree::BeTree::{6}::apply] -/ +def betree_be_tree_apply_back + (self : betree_be_tree_t) (key : U64) (msg : betree_message_t) (st : State) : + Result betree_be_tree_t + := + do + let (n, nic) ← + betree_node_apply_back self.betree_be_tree_root + self.betree_be_tree_params self.betree_be_tree_node_id_cnt key msg st + Result.ret + { self with betree_be_tree_node_id_cnt := nic, betree_be_tree_root := n } + +/- [betree_main::betree::BeTree::{6}::insert] -/ +def betree_be_tree_insert_fwd + (self : betree_be_tree_t) (key : U64) (value : U64) (st : State) : + Result (State × Unit) + := + do + let (st0, _) ← + betree_be_tree_apply_fwd self key (betree_message_t.Insert value) st + let _ ← + betree_be_tree_apply_back self key (betree_message_t.Insert value) st + Result.ret (st0, ()) + +/- [betree_main::betree::BeTree::{6}::insert] -/ +def betree_be_tree_insert_back + (self : betree_be_tree_t) (key : U64) (value : U64) (st : State) : + Result betree_be_tree_t + := + betree_be_tree_apply_back self key (betree_message_t.Insert value) st + +/- [betree_main::betree::BeTree::{6}::delete] -/ +def betree_be_tree_delete_fwd + (self : betree_be_tree_t) (key : U64) (st : State) : + Result (State × Unit) + := + do + let (st0, _) ← + betree_be_tree_apply_fwd self key betree_message_t.Delete st + let _ ← betree_be_tree_apply_back self key betree_message_t.Delete st + Result.ret (st0, ()) + +/- [betree_main::betree::BeTree::{6}::delete] -/ +def betree_be_tree_delete_back + (self : betree_be_tree_t) (key : U64) (st : State) : + Result betree_be_tree_t + := + betree_be_tree_apply_back self key betree_message_t.Delete st + +/- [betree_main::betree::BeTree::{6}::upsert] -/ +def betree_be_tree_upsert_fwd + (self : betree_be_tree_t) (key : U64) (upd : betree_upsert_fun_state_t) + (st : State) : + Result (State × Unit) + := + do + let (st0, _) ← + betree_be_tree_apply_fwd self key (betree_message_t.Upsert upd) st + let _ ← + betree_be_tree_apply_back self key (betree_message_t.Upsert upd) st + Result.ret (st0, ()) + +/- [betree_main::betree::BeTree::{6}::upsert] -/ +def betree_be_tree_upsert_back + (self : betree_be_tree_t) (key : U64) (upd : betree_upsert_fun_state_t) + (st : State) : + Result betree_be_tree_t + := + betree_be_tree_apply_back self key (betree_message_t.Upsert upd) st + +/- [betree_main::betree::BeTree::{6}::lookup] -/ +def betree_be_tree_lookup_fwd + (self : betree_be_tree_t) (key : U64) (st : State) : + Result (State × (Option U64)) + := + betree_node_lookup_fwd self.betree_be_tree_root key st + +/- [betree_main::betree::BeTree::{6}::lookup] -/ +def betree_be_tree_lookup_back + (self : betree_be_tree_t) (key : U64) (st : State) : + Result betree_be_tree_t + := + do + let n ← betree_node_lookup_back self.betree_be_tree_root key st + Result.ret { self with betree_be_tree_root := n } + +/- [betree_main::main] -/ +def main_fwd : Result Unit := + Result.ret () + +/- Unit test for [betree_main::main] -/ +#assert (main_fwd == .ret ()) + diff --git a/tests/lean/BetreeMain/Opaque.lean b/tests/lean/BetreeMain/Opaque.lean new file mode 100644 index 00000000..c8226d4e --- /dev/null +++ b/tests/lean/BetreeMain/Opaque.lean @@ -0,0 +1,31 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [betree_main]: opaque function definitions +import Base +import BetreeMain.Types +open Primitives + +structure OpaqueDefs where + + /- [betree_main::betree_utils::load_internal_node] -/ + betree_utils_load_internal_node_fwd + : + U64 -> State -> Result (State × (betree_list_t (U64 × betree_message_t))) + + /- [betree_main::betree_utils::store_internal_node] -/ + betree_utils_store_internal_node_fwd + : + U64 -> betree_list_t (U64 × betree_message_t) -> State -> Result (State × + Unit) + + /- [betree_main::betree_utils::load_leaf_node] -/ + betree_utils_load_leaf_node_fwd + : U64 -> State -> Result (State × (betree_list_t (U64 × U64))) + + /- [betree_main::betree_utils::store_leaf_node] -/ + betree_utils_store_leaf_node_fwd + : U64 -> betree_list_t (U64 × U64) -> State -> Result (State × Unit) + + /- [core::option::Option::{0}::unwrap] -/ + core_option_option_unwrap_fwd + (T : Type) : Option T -> State -> Result (State × T) + diff --git a/tests/lean/BetreeMain/Types.lean b/tests/lean/BetreeMain/Types.lean new file mode 100644 index 00000000..4875a8ba --- /dev/null +++ b/tests/lean/BetreeMain/Types.lean @@ -0,0 +1,62 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [betree_main]: type definitions +import Base +open Primitives + +/- [betree_main::betree::List] -/ +inductive betree_list_t (T : Type) := +| Cons : T -> betree_list_t T -> betree_list_t T +| Nil : betree_list_t T + +/- [betree_main::betree::UpsertFunState] -/ +inductive betree_upsert_fun_state_t := +| Add : U64 -> betree_upsert_fun_state_t +| Sub : U64 -> betree_upsert_fun_state_t + +/- [betree_main::betree::Message] -/ +inductive betree_message_t := +| Insert : U64 -> betree_message_t +| Delete : betree_message_t +| Upsert : betree_upsert_fun_state_t -> betree_message_t + +/- [betree_main::betree::Leaf] -/ +structure betree_leaf_t where + betree_leaf_id : U64 + betree_leaf_size : U64 + +mutual + +/- [betree_main::betree::Node] -/ +inductive betree_node_t := +| Internal : betree_internal_t -> betree_node_t +| Leaf : betree_leaf_t -> betree_node_t + +/- [betree_main::betree::Internal] -/ +inductive betree_internal_t := +| mkbetree_internal_t : + U64 -> + U64 -> + betree_node_t -> + betree_node_t -> + betree_internal_t + +end + +/- [betree_main::betree::Params] -/ +structure betree_params_t where + betree_params_min_flush_size : U64 + betree_params_split_size : U64 + +/- [betree_main::betree::NodeIdCounter] -/ +structure betree_node_id_counter_t where + betree_node_id_counter_next_node_id : U64 + +/- [betree_main::betree::BeTree] -/ +structure betree_be_tree_t where + betree_be_tree_params : betree_params_t + betree_be_tree_node_id_cnt : betree_node_id_counter_t + betree_be_tree_root : betree_node_t + +/- The state type used in the state-error monad -/ +axiom State : Type + diff --git a/tests/lean/Constants.lean b/tests/lean/Constants.lean new file mode 100644 index 00000000..cd2f88f5 --- /dev/null +++ b/tests/lean/Constants.lean @@ -0,0 +1,132 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [constants] +import Base +open Primitives + +/- [constants::X0] -/ +def x0_body : Result U32 := Result.ret (U32.ofInt 0 (by intlit)) +def x0_c : U32 := eval_global x0_body (by simp) + +/- [core::num::u32::{9}::MAX] -/ +def core_num_u32_max_body : Result U32 := + Result.ret (U32.ofInt 4294967295 (by intlit)) +def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) + +/- [constants::X1] -/ +def x1_body : Result U32 := Result.ret core_num_u32_max_c +def x1_c : U32 := eval_global x1_body (by simp) + +/- [constants::X2] -/ +def x2_body : Result U32 := Result.ret (U32.ofInt 3 (by intlit)) +def x2_c : U32 := eval_global x2_body (by simp) + +/- [constants::incr] -/ +def incr_fwd (n : U32) : Result U32 := + n + (U32.ofInt 1 (by intlit)) + +/- [constants::X3] -/ +def x3_body : Result U32 := incr_fwd (U32.ofInt 32 (by intlit)) +def x3_c : U32 := eval_global x3_body (by simp) + +/- [constants::mk_pair0] -/ +def mk_pair0_fwd (x : U32) (y : U32) : Result (U32 × U32) := + Result.ret (x, y) + +/- [constants::Pair] -/ +structure pair_t (T1 T2 : Type) where + pair_x : T1 + pair_y : T2 + +/- [constants::mk_pair1] -/ +def mk_pair1_fwd (x : U32) (y : U32) : Result (pair_t U32 U32) := + Result.ret { pair_x := x, pair_y := y } + +/- [constants::P0] -/ +def p0_body : Result (U32 × U32) := + mk_pair0_fwd (U32.ofInt 0 (by intlit)) (U32.ofInt 1 (by intlit)) +def p0_c : (U32 × U32) := eval_global p0_body (by simp) + +/- [constants::P1] -/ +def p1_body : Result (pair_t U32 U32) := + mk_pair1_fwd (U32.ofInt 0 (by intlit)) (U32.ofInt 1 (by intlit)) +def p1_c : pair_t U32 U32 := eval_global p1_body (by simp) + +/- [constants::P2] -/ +def p2_body : Result (U32 × U32) := + Result.ret ((U32.ofInt 0 (by intlit)), (U32.ofInt 1 (by intlit))) +def p2_c : (U32 × U32) := eval_global p2_body (by simp) + +/- [constants::P3] -/ +def p3_body : Result (pair_t U32 U32) := + Result.ret + { pair_x := (U32.ofInt 0 (by intlit)), pair_y := (U32.ofInt 1 (by intlit)) } +def p3_c : pair_t U32 U32 := eval_global p3_body (by simp) + +/- [constants::Wrap] -/ +structure wrap_t (T : Type) where + wrap_val : T + +/- [constants::Wrap::{0}::new] -/ +def wrap_new_fwd (T : Type) (val : T) : Result (wrap_t T) := + Result.ret { wrap_val := val } + +/- [constants::Y] -/ +def y_body : Result (wrap_t I32) := wrap_new_fwd I32 (I32.ofInt 2 (by intlit)) +def y_c : wrap_t I32 := eval_global y_body (by simp) + +/- [constants::unwrap_y] -/ +def unwrap_y_fwd : Result I32 := + Result.ret y_c.wrap_val + +/- [constants::YVAL] -/ +def yval_body : Result I32 := unwrap_y_fwd +def yval_c : I32 := eval_global yval_body (by simp) + +/- [constants::get_z1::Z1] -/ +def get_z1_z1_body : Result I32 := Result.ret (I32.ofInt 3 (by intlit)) +def get_z1_z1_c : I32 := eval_global get_z1_z1_body (by simp) + +/- [constants::get_z1] -/ +def get_z1_fwd : Result I32 := + Result.ret get_z1_z1_c + +/- [constants::add] -/ +def add_fwd (a : I32) (b : I32) : Result I32 := + a + b + +/- [constants::Q1] -/ +def q1_body : Result I32 := Result.ret (I32.ofInt 5 (by intlit)) +def q1_c : I32 := eval_global q1_body (by simp) + +/- [constants::Q2] -/ +def q2_body : Result I32 := Result.ret q1_c +def q2_c : I32 := eval_global q2_body (by simp) + +/- [constants::Q3] -/ +def q3_body : Result I32 := add_fwd q2_c (I32.ofInt 3 (by intlit)) +def q3_c : I32 := eval_global q3_body (by simp) + +/- [constants::get_z2] -/ +def get_z2_fwd : Result I32 := + do + let i ← get_z1_fwd + let i0 ← add_fwd i q3_c + add_fwd q1_c i0 + +/- [constants::S1] -/ +def s1_body : Result U32 := Result.ret (U32.ofInt 6 (by intlit)) +def s1_c : U32 := eval_global s1_body (by simp) + +/- [constants::S2] -/ +def s2_body : Result U32 := incr_fwd s1_c +def s2_c : U32 := eval_global s2_body (by simp) + +/- [constants::S3] -/ +def s3_body : Result (pair_t U32 U32) := Result.ret p3_c +def s3_c : pair_t U32 U32 := eval_global s3_body (by simp) + +/- [constants::S4] -/ +def s4_body : Result (pair_t U32 U32) := + mk_pair1_fwd (U32.ofInt 7 (by intlit)) (U32.ofInt 8 (by intlit)) +def s4_c : pair_t U32 U32 := eval_global s4_body (by simp) + diff --git a/tests/lean/External.lean b/tests/lean/External.lean new file mode 100644 index 00000000..b95db309 --- /dev/null +++ b/tests/lean/External.lean @@ -0,0 +1 @@ +import External.Funs diff --git a/tests/lean/External/Funs.lean b/tests/lean/External/Funs.lean new file mode 100644 index 00000000..73e45938 --- /dev/null +++ b/tests/lean/External/Funs.lean @@ -0,0 +1,88 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [external]: function definitions +import Base +import External.Types +import External.ExternalFuns +open Primitives + +/- [external::swap] -/ +def swap_fwd + (T : Type) (x : T) (y : T) (st : State) : Result (State × Unit) := + do + let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st + let (st1, _) ← opaque_defs.core_mem_swap_back0 T x y st st0 + let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1 + Result.ret (st2, ()) + +/- [external::swap] -/ +def swap_back + (T : Type) (x : T) (y : T) (st : State) (st0 : State) : + Result (State × (T × T)) + := + do + let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st + let (st2, x0) ← opaque_defs.core_mem_swap_back0 T x y st st1 + let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2 + Result.ret (st0, (x0, y0)) + +/- [external::test_new_non_zero_u32] -/ +def test_new_non_zero_u32_fwd + (x : U32) (st : State) : Result (State × core_num_nonzero_non_zero_u32_t) := + do + let (st0, opt) ← opaque_defs.core_num_nonzero_non_zero_u32_new_fwd x st + opaque_defs.core_option_option_unwrap_fwd core_num_nonzero_non_zero_u32_t + opt st0 + +/- [external::test_vec] -/ +def test_vec_fwd : Result Unit := + do + let v := vec_new U32 + let _ ← vec_push_back U32 v (U32.ofInt 0 (by intlit)) + Result.ret () + +/- Unit test for [external::test_vec] -/ +#assert (test_vec_fwd == .ret ()) + +/- [external::custom_swap] -/ +def custom_swap_fwd + (T : Type) (x : T) (y : T) (st : State) : Result (State × T) := + do + let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st + let (st1, x0) ← opaque_defs.core_mem_swap_back0 T x y st st0 + let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1 + Result.ret (st2, x0) + +/- [external::custom_swap] -/ +def custom_swap_back + (T : Type) (x : T) (y : T) (st : State) (ret0 : T) (st0 : State) : + Result (State × (T × T)) + := + do + let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st + let (st2, _) ← opaque_defs.core_mem_swap_back0 T x y st st1 + let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2 + Result.ret (st0, (ret0, y0)) + +/- [external::test_custom_swap] -/ +def test_custom_swap_fwd + (x : U32) (y : U32) (st : State) : Result (State × Unit) := + do + let (st0, _) ← custom_swap_fwd U32 x y st + Result.ret (st0, ()) + +/- [external::test_custom_swap] -/ +def test_custom_swap_back + (x : U32) (y : U32) (st : State) (st0 : State) : + Result (State × (U32 × U32)) + := + custom_swap_back U32 x y st (U32.ofInt 1 (by intlit)) st0 + +/- [external::test_swap_non_zero] -/ +def test_swap_non_zero_fwd (x : U32) (st : State) : Result (State × U32) := + do + let (st0, _) ← swap_fwd U32 x (U32.ofInt 0 (by intlit)) st + let (st1, (x0, _)) ← swap_back U32 x (U32.ofInt 0 (by intlit)) st st0 + if x0 = (U32.ofInt 0 (by intlit)) + then Result.fail Error.panic + else Result.ret (st1, x0) + diff --git a/tests/lean/External/Opaque.lean b/tests/lean/External/Opaque.lean new file mode 100644 index 00000000..5483c3a9 --- /dev/null +++ b/tests/lean/External/Opaque.lean @@ -0,0 +1,28 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [external]: opaque function definitions +import Base +import External.Types +open Primitives + +structure OpaqueDefs where + + /- [core::mem::swap] -/ + core_mem_swap_fwd (T : Type) : T -> T -> State -> Result (State × Unit) + + /- [core::mem::swap] -/ + core_mem_swap_back0 + (T : Type) : T -> T -> State -> State -> Result (State × T) + + /- [core::mem::swap] -/ + core_mem_swap_back1 + (T : Type) : T -> T -> State -> State -> Result (State × T) + + /- [core::num::nonzero::NonZeroU32::{14}::new] -/ + core_num_nonzero_non_zero_u32_new_fwd + : + U32 -> State -> Result (State × (Option core_num_nonzero_non_zero_u32_t)) + + /- [core::option::Option::{0}::unwrap] -/ + core_option_option_unwrap_fwd + (T : Type) : Option T -> State -> Result (State × T) + diff --git a/tests/lean/External/Types.lean b/tests/lean/External/Types.lean new file mode 100644 index 00000000..25907da2 --- /dev/null +++ b/tests/lean/External/Types.lean @@ -0,0 +1,11 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [external]: type definitions +import Base +open Primitives + +/- [core::num::nonzero::NonZeroU32] -/ +axiom core_num_nonzero_non_zero_u32_t : Type + +/- The state type used in the state-error monad -/ +axiom State : Type + diff --git a/tests/lean/Hashmap.lean b/tests/lean/Hashmap.lean new file mode 100644 index 00000000..41630205 --- /dev/null +++ b/tests/lean/Hashmap.lean @@ -0,0 +1 @@ +import Hashmap.Funs diff --git a/tests/lean/Hashmap/Funs.lean b/tests/lean/Hashmap/Funs.lean new file mode 100644 index 00000000..26742d5d --- /dev/null +++ b/tests/lean/Hashmap/Funs.lean @@ -0,0 +1,474 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [hashmap]: function definitions +import Base +import Hashmap.Types +open Primitives + +/- [hashmap::hash_key] -/ +def hash_key_fwd (k : Usize) : Result Usize := + Result.ret k + +/- [hashmap::HashMap::{0}::allocate_slots] -/ +divergent def hash_map_allocate_slots_loop_fwd + (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) := + if n > (Usize.ofInt 0 (by intlit)) + then + do + let slots0 ← vec_push_back (list_t T) slots list_t.Nil + let n0 ← n - (Usize.ofInt 1 (by intlit)) + hash_map_allocate_slots_loop_fwd T slots0 n0 + else Result.ret slots + +/- [hashmap::HashMap::{0}::allocate_slots] -/ +def hash_map_allocate_slots_fwd + (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) := + hash_map_allocate_slots_loop_fwd T slots n + +/- [hashmap::HashMap::{0}::new_with_capacity] -/ +def hash_map_new_with_capacity_fwd + (T : Type) (capacity : Usize) (max_load_dividend : Usize) + (max_load_divisor : Usize) : + Result (hash_map_t T) + := + do + let v := vec_new (list_t T) + let slots ← hash_map_allocate_slots_fwd T v capacity + let i ← capacity * max_load_dividend + let i0 ← i / max_load_divisor + Result.ret + { + hash_map_num_entries := (Usize.ofInt 0 (by intlit)), + hash_map_max_load_factor := (max_load_dividend, max_load_divisor), + hash_map_max_load := i0, + hash_map_slots := slots + } + +/- [hashmap::HashMap::{0}::new] -/ +def hash_map_new_fwd (T : Type) : Result (hash_map_t T) := + hash_map_new_with_capacity_fwd T (Usize.ofInt 32 (by intlit)) + (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) + +/- [hashmap::HashMap::{0}::clear] -/ +divergent def hash_map_clear_loop_fwd_back + (T : Type) (slots : Vec (list_t T)) (i : Usize) : Result (Vec (list_t T)) := + let i0 := vec_len (list_t T) slots + if i < i0 + then + do + let i1 ← i + (Usize.ofInt 1 (by intlit)) + let slots0 ← vec_index_mut_back (list_t T) slots i list_t.Nil + hash_map_clear_loop_fwd_back T slots0 i1 + else Result.ret slots + +/- [hashmap::HashMap::{0}::clear] -/ +def hash_map_clear_fwd_back + (T : Type) (self : hash_map_t T) : Result (hash_map_t T) := + do + let v ← + hash_map_clear_loop_fwd_back T self.hash_map_slots + (Usize.ofInt 0 (by intlit)) + Result.ret + { + self + with + hash_map_num_entries := (Usize.ofInt 0 (by intlit)), + hash_map_slots := v + } + +/- [hashmap::HashMap::{0}::len] -/ +def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result Usize := + Result.ret self.hash_map_num_entries + +/- [hashmap::HashMap::{0}::insert_in_list] -/ +divergent def hash_map_insert_in_list_loop_fwd + (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool := + match h: ls with + | list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret false + else hash_map_insert_in_list_loop_fwd T key value tl + | list_t.Nil => Result.ret true + +/- [hashmap::HashMap::{0}::insert_in_list] -/ +def hash_map_insert_in_list_fwd + (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool := + hash_map_insert_in_list_loop_fwd T key value ls + +/- [hashmap::HashMap::{0}::insert_in_list] -/ +divergent def hash_map_insert_in_list_loop_back + (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) := + match h: ls with + | list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret (list_t.Cons ckey value tl) + else + do + let tl0 ← hash_map_insert_in_list_loop_back T key value tl + Result.ret (list_t.Cons ckey cvalue tl0) + | list_t.Nil => let l := list_t.Nil + Result.ret (list_t.Cons key value l) + +/- [hashmap::HashMap::{0}::insert_in_list] -/ +def hash_map_insert_in_list_back + (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) := + hash_map_insert_in_list_loop_back T key value ls + +/- [hashmap::HashMap::{0}::insert_no_resize] -/ +def hash_map_insert_no_resize_fwd_back + (T : Type) (self : hash_map_t T) (key : Usize) (value : T) : + Result (hash_map_t T) + := + do + let hash ← hash_key_fwd key + let i := vec_len (list_t T) self.hash_map_slots + let hash_mod ← hash % i + let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod + let inserted ← hash_map_insert_in_list_fwd T key value l + if inserted + then + do + let i0 ← self.hash_map_num_entries + (Usize.ofInt 1 (by intlit)) + let l0 ← hash_map_insert_in_list_back T key value l + let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 + Result.ret + { self with hash_map_num_entries := i0, hash_map_slots := v } + else + do + let l0 ← hash_map_insert_in_list_back T key value l + let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 + Result.ret { self with hash_map_slots := v } + +/- [core::num::u32::{9}::MAX] -/ +def core_num_u32_max_body : Result U32 := + Result.ret (U32.ofInt 4294967295 (by intlit)) +def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) + +/- [hashmap::HashMap::{0}::move_elements_from_list] -/ +divergent def hash_map_move_elements_from_list_loop_fwd_back + (T : Type) (ntable : hash_map_t T) (ls : list_t T) : Result (hash_map_t T) := + match h: ls with + | list_t.Cons k v tl => + do + let ntable0 ← hash_map_insert_no_resize_fwd_back T ntable k v + hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl + | list_t.Nil => Result.ret ntable + +/- [hashmap::HashMap::{0}::move_elements_from_list] -/ +def hash_map_move_elements_from_list_fwd_back + (T : Type) (ntable : hash_map_t T) (ls : list_t T) : Result (hash_map_t T) := + hash_map_move_elements_from_list_loop_fwd_back T ntable ls + +/- [hashmap::HashMap::{0}::move_elements] -/ +divergent def hash_map_move_elements_loop_fwd_back + (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : + Result ((hash_map_t T) × (Vec (list_t T))) + := + let i0 := vec_len (list_t T) slots + if i < i0 + then + do + let l ← vec_index_mut_fwd (list_t T) slots i + let ls := mem_replace_fwd (list_t T) l list_t.Nil + let ntable0 ← hash_map_move_elements_from_list_fwd_back T ntable ls + let i1 ← i + (Usize.ofInt 1 (by intlit)) + let l0 := mem_replace_back (list_t T) l list_t.Nil + let slots0 ← vec_index_mut_back (list_t T) slots i l0 + hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1 + else Result.ret (ntable, slots) + +/- [hashmap::HashMap::{0}::move_elements] -/ +def hash_map_move_elements_fwd_back + (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : + Result ((hash_map_t T) × (Vec (list_t T))) + := + hash_map_move_elements_loop_fwd_back T ntable slots i + +/- [hashmap::HashMap::{0}::try_resize] -/ +def hash_map_try_resize_fwd_back + (T : Type) (self : hash_map_t T) : Result (hash_map_t T) := + do + let max_usize ← Scalar.cast .Usize core_num_u32_max_c + let capacity := vec_len (list_t T) self.hash_map_slots + let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) + let (i, i0) := self.hash_map_max_load_factor + let i1 ← n1 / i + if capacity <= i1 + then + do + let i2 ← capacity * (Usize.ofInt 2 (by intlit)) + let ntable ← hash_map_new_with_capacity_fwd T i2 i i0 + let (ntable0, _) ← + hash_map_move_elements_fwd_back T ntable self.hash_map_slots + (Usize.ofInt 0 (by intlit)) + Result.ret + { + ntable0 + with + hash_map_num_entries := self.hash_map_num_entries, + hash_map_max_load_factor := (i, i0) + } + else Result.ret { self with hash_map_max_load_factor := (i, i0) } + +/- [hashmap::HashMap::{0}::insert] -/ +def hash_map_insert_fwd_back + (T : Type) (self : hash_map_t T) (key : Usize) (value : T) : + Result (hash_map_t T) + := + do + let self0 ← hash_map_insert_no_resize_fwd_back T self key value + let i ← hash_map_len_fwd T self0 + if i > self0.hash_map_max_load + then hash_map_try_resize_fwd_back T self0 + else Result.ret self0 + +/- [hashmap::HashMap::{0}::contains_key_in_list] -/ +divergent def hash_map_contains_key_in_list_loop_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result Bool := + match h: ls with + | list_t.Cons ckey t tl => + if ckey = key + then Result.ret true + else hash_map_contains_key_in_list_loop_fwd T key tl + | list_t.Nil => Result.ret false + +/- [hashmap::HashMap::{0}::contains_key_in_list] -/ +def hash_map_contains_key_in_list_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result Bool := + hash_map_contains_key_in_list_loop_fwd T key ls + +/- [hashmap::HashMap::{0}::contains_key] -/ +def hash_map_contains_key_fwd + (T : Type) (self : hash_map_t T) (key : Usize) : Result Bool := + do + let hash ← hash_key_fwd key + let i := vec_len (list_t T) self.hash_map_slots + let hash_mod ← hash % i + let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod + hash_map_contains_key_in_list_fwd T key l + +/- [hashmap::HashMap::{0}::get_in_list] -/ +divergent def hash_map_get_in_list_loop_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result T := + match h: ls with + | list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret cvalue + else hash_map_get_in_list_loop_fwd T key tl + | list_t.Nil => Result.fail Error.panic + +/- [hashmap::HashMap::{0}::get_in_list] -/ +def hash_map_get_in_list_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result T := + hash_map_get_in_list_loop_fwd T key ls + +/- [hashmap::HashMap::{0}::get] -/ +def hash_map_get_fwd + (T : Type) (self : hash_map_t T) (key : Usize) : Result T := + do + let hash ← hash_key_fwd key + let i := vec_len (list_t T) self.hash_map_slots + let hash_mod ← hash % i + let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod + hash_map_get_in_list_fwd T key l + +/- [hashmap::HashMap::{0}::get_mut_in_list] -/ +divergent def hash_map_get_mut_in_list_loop_fwd + (T : Type) (ls : list_t T) (key : Usize) : Result T := + match h: ls with + | list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret cvalue + else hash_map_get_mut_in_list_loop_fwd T tl key + | list_t.Nil => Result.fail Error.panic + +/- [hashmap::HashMap::{0}::get_mut_in_list] -/ +def hash_map_get_mut_in_list_fwd + (T : Type) (ls : list_t T) (key : Usize) : Result T := + hash_map_get_mut_in_list_loop_fwd T ls key + +/- [hashmap::HashMap::{0}::get_mut_in_list] -/ +divergent def hash_map_get_mut_in_list_loop_back + (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) := + match h: ls with + | list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret (list_t.Cons ckey ret0 tl) + else + do + let tl0 ← hash_map_get_mut_in_list_loop_back T tl key ret0 + Result.ret (list_t.Cons ckey cvalue tl0) + | list_t.Nil => Result.fail Error.panic + +/- [hashmap::HashMap::{0}::get_mut_in_list] -/ +def hash_map_get_mut_in_list_back + (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) := + hash_map_get_mut_in_list_loop_back T ls key ret0 + +/- [hashmap::HashMap::{0}::get_mut] -/ +def hash_map_get_mut_fwd + (T : Type) (self : hash_map_t T) (key : Usize) : Result T := + do + let hash ← hash_key_fwd key + let i := vec_len (list_t T) self.hash_map_slots + let hash_mod ← hash % i + let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod + hash_map_get_mut_in_list_fwd T l key + +/- [hashmap::HashMap::{0}::get_mut] -/ +def hash_map_get_mut_back + (T : Type) (self : hash_map_t T) (key : Usize) (ret0 : T) : + Result (hash_map_t T) + := + do + let hash ← hash_key_fwd key + let i := vec_len (list_t T) self.hash_map_slots + let hash_mod ← hash % i + let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod + let l0 ← hash_map_get_mut_in_list_back T l key ret0 + let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 + Result.ret { self with hash_map_slots := v } + +/- [hashmap::HashMap::{0}::remove_from_list] -/ +divergent def hash_map_remove_from_list_loop_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) := + match h: ls with + | list_t.Cons ckey t tl => + if ckey = key + then + let mv_ls := + mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil + match h: mv_ls with + | list_t.Cons i cvalue tl0 => Result.ret (Option.some cvalue) + | list_t.Nil => Result.fail Error.panic + else hash_map_remove_from_list_loop_fwd T key tl + | list_t.Nil => Result.ret Option.none + +/- [hashmap::HashMap::{0}::remove_from_list] -/ +def hash_map_remove_from_list_fwd + (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) := + hash_map_remove_from_list_loop_fwd T key ls + +/- [hashmap::HashMap::{0}::remove_from_list] -/ +divergent def hash_map_remove_from_list_loop_back + (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) := + match h: ls with + | list_t.Cons ckey t tl => + if ckey = key + then + let mv_ls := + mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil + match h: mv_ls with + | list_t.Cons i cvalue tl0 => Result.ret tl0 + | list_t.Nil => Result.fail Error.panic + else + do + let tl0 ← hash_map_remove_from_list_loop_back T key tl + Result.ret (list_t.Cons ckey t tl0) + | list_t.Nil => Result.ret list_t.Nil + +/- [hashmap::HashMap::{0}::remove_from_list] -/ +def hash_map_remove_from_list_back + (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) := + hash_map_remove_from_list_loop_back T key ls + +/- [hashmap::HashMap::{0}::remove] -/ +def hash_map_remove_fwd + (T : Type) (self : hash_map_t T) (key : Usize) : Result (Option T) := + do + let hash ← hash_key_fwd key + let i := vec_len (list_t T) self.hash_map_slots + let hash_mod ← hash % i + let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod + let x ← hash_map_remove_from_list_fwd T key l + match h: x with + | Option.none => Result.ret Option.none + | Option.some x0 => + do + let _ ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit)) + Result.ret (Option.some x0) + +/- [hashmap::HashMap::{0}::remove] -/ +def hash_map_remove_back + (T : Type) (self : hash_map_t T) (key : Usize) : Result (hash_map_t T) := + do + let hash ← hash_key_fwd key + let i := vec_len (list_t T) self.hash_map_slots + let hash_mod ← hash % i + let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod + let x ← hash_map_remove_from_list_fwd T key l + match h: x with + | Option.none => + do + let l0 ← hash_map_remove_from_list_back T key l + let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 + Result.ret { self with hash_map_slots := v } + | Option.some x0 => + do + let i0 ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit)) + let l0 ← hash_map_remove_from_list_back T key l + let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 + Result.ret + { self with hash_map_num_entries := i0, hash_map_slots := v } + +/- [hashmap::test1] -/ +def test1_fwd : Result Unit := + do + let hm ← hash_map_new_fwd U64 + let hm0 ← + hash_map_insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit)) + (U64.ofInt 42 (by intlit)) + let hm1 ← + hash_map_insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit)) + (U64.ofInt 18 (by intlit)) + let hm2 ← + hash_map_insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit)) + (U64.ofInt 138 (by intlit)) + let hm3 ← + hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) + (U64.ofInt 256 (by intlit)) + let i ← hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) + if not (i = (U64.ofInt 18 (by intlit))) + then Result.fail Error.panic + else + do + let hm4 ← + hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit)) + (U64.ofInt 56 (by intlit)) + let i0 ← hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) + if not (i0 = (U64.ofInt 56 (by intlit))) + then Result.fail Error.panic + else + do + let x ← + hash_map_remove_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) + match h: x with + | Option.none => Result.fail Error.panic + | Option.some x0 => + if not (x0 = (U64.ofInt 56 (by intlit))) + then Result.fail Error.panic + else + do + let hm5 ← + hash_map_remove_back U64 hm4 (Usize.ofInt 1024 (by intlit)) + let i1 ← + hash_map_get_fwd U64 hm5 (Usize.ofInt 0 (by intlit)) + if not (i1 = (U64.ofInt 42 (by intlit))) + then Result.fail Error.panic + else + do + let i2 ← + hash_map_get_fwd U64 hm5 (Usize.ofInt 128 (by intlit)) + if not (i2 = (U64.ofInt 18 (by intlit))) + then Result.fail Error.panic + else + do + let i3 ← + hash_map_get_fwd U64 hm5 + (Usize.ofInt 1056 (by intlit)) + if not (i3 = (U64.ofInt 256 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [hashmap::test1] -/ +#assert (test1_fwd == .ret ()) + diff --git a/tests/lean/Hashmap/Types.lean b/tests/lean/Hashmap/Types.lean new file mode 100644 index 00000000..af26f363 --- /dev/null +++ b/tests/lean/Hashmap/Types.lean @@ -0,0 +1,17 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [hashmap]: type definitions +import Base +open Primitives + +/- [hashmap::List] -/ +inductive list_t (T : Type) := +| Cons : Usize -> T -> list_t T -> list_t T +| Nil : list_t T + +/- [hashmap::HashMap] -/ +structure hash_map_t (T : Type) where + hash_map_num_entries : Usize + hash_map_max_load_factor : (Usize × Usize) + hash_map_max_load : Usize + hash_map_slots : Vec (list_t T) + diff --git a/tests/lean/HashmapMain.lean b/tests/lean/HashmapMain.lean new file mode 100644 index 00000000..1a4e7f82 --- /dev/null +++ b/tests/lean/HashmapMain.lean @@ -0,0 +1 @@ +import HashmapMain.Funs diff --git a/tests/lean/HashmapMain/Funs.lean b/tests/lean/HashmapMain/Funs.lean new file mode 100644 index 00000000..a59a9f26 --- /dev/null +++ b/tests/lean/HashmapMain/Funs.lean @@ -0,0 +1,557 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [hashmap_main]: function definitions +import Base +import HashmapMain.Types +import HashmapMain.ExternalFuns +open Primitives + +/- [hashmap_main::hashmap::hash_key] -/ +def hashmap_hash_key_fwd (k : Usize) : Result Usize := + Result.ret k + +/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/ +divergent def hashmap_hash_map_allocate_slots_loop_fwd + (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) : + Result (Vec (hashmap_list_t T)) + := + if n > (Usize.ofInt 0 (by intlit)) + then + do + let slots0 ← vec_push_back (hashmap_list_t T) slots hashmap_list_t.Nil + let n0 ← n - (Usize.ofInt 1 (by intlit)) + hashmap_hash_map_allocate_slots_loop_fwd T slots0 n0 + else Result.ret slots + +/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/ +def hashmap_hash_map_allocate_slots_fwd + (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) : + Result (Vec (hashmap_list_t T)) + := + hashmap_hash_map_allocate_slots_loop_fwd T slots n + +/- [hashmap_main::hashmap::HashMap::{0}::new_with_capacity] -/ +def hashmap_hash_map_new_with_capacity_fwd + (T : Type) (capacity : Usize) (max_load_dividend : Usize) + (max_load_divisor : Usize) : + Result (hashmap_hash_map_t T) + := + do + let v := vec_new (hashmap_list_t T) + let slots ← hashmap_hash_map_allocate_slots_fwd T v capacity + let i ← capacity * max_load_dividend + let i0 ← i / max_load_divisor + Result.ret + { + hashmap_hash_map_num_entries := (Usize.ofInt 0 (by intlit)), + hashmap_hash_map_max_load_factor := + (max_load_dividend, max_load_divisor), + hashmap_hash_map_max_load := i0, + hashmap_hash_map_slots := slots + } + +/- [hashmap_main::hashmap::HashMap::{0}::new] -/ +def hashmap_hash_map_new_fwd (T : Type) : Result (hashmap_hash_map_t T) := + hashmap_hash_map_new_with_capacity_fwd T (Usize.ofInt 32 (by intlit)) + (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) + +/- [hashmap_main::hashmap::HashMap::{0}::clear] -/ +divergent def hashmap_hash_map_clear_loop_fwd_back + (T : Type) (slots : Vec (hashmap_list_t T)) (i : Usize) : + Result (Vec (hashmap_list_t T)) + := + let i0 := vec_len (hashmap_list_t T) slots + if i < i0 + then + do + let i1 ← i + (Usize.ofInt 1 (by intlit)) + let slots0 ← + vec_index_mut_back (hashmap_list_t T) slots i hashmap_list_t.Nil + hashmap_hash_map_clear_loop_fwd_back T slots0 i1 + else Result.ret slots + +/- [hashmap_main::hashmap::HashMap::{0}::clear] -/ +def hashmap_hash_map_clear_fwd_back + (T : Type) (self : hashmap_hash_map_t T) : Result (hashmap_hash_map_t T) := + do + let v ← + hashmap_hash_map_clear_loop_fwd_back T self.hashmap_hash_map_slots + (Usize.ofInt 0 (by intlit)) + Result.ret + { + self + with + hashmap_hash_map_num_entries := (Usize.ofInt 0 (by intlit)), + hashmap_hash_map_slots := v + } + +/- [hashmap_main::hashmap::HashMap::{0}::len] -/ +def hashmap_hash_map_len_fwd + (T : Type) (self : hashmap_hash_map_t T) : Result Usize := + Result.ret self.hashmap_hash_map_num_entries + +/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ +divergent def hashmap_hash_map_insert_in_list_loop_fwd + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : Result Bool := + match h: ls with + | hashmap_list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret false + else hashmap_hash_map_insert_in_list_loop_fwd T key value tl + | hashmap_list_t.Nil => Result.ret true + +/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ +def hashmap_hash_map_insert_in_list_fwd + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : Result Bool := + hashmap_hash_map_insert_in_list_loop_fwd T key value ls + +/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ +divergent def hashmap_hash_map_insert_in_list_loop_back + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : + Result (hashmap_list_t T) + := + match h: ls with + | hashmap_list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret (hashmap_list_t.Cons ckey value tl) + else + do + let tl0 ← hashmap_hash_map_insert_in_list_loop_back T key value tl + Result.ret (hashmap_list_t.Cons ckey cvalue tl0) + | hashmap_list_t.Nil => + let l := hashmap_list_t.Nil + Result.ret (hashmap_list_t.Cons key value l) + +/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ +def hashmap_hash_map_insert_in_list_back + (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : + Result (hashmap_list_t T) + := + hashmap_hash_map_insert_in_list_loop_back T key value ls + +/- [hashmap_main::hashmap::HashMap::{0}::insert_no_resize] -/ +def hashmap_hash_map_insert_no_resize_fwd_back + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (value : T) : + Result (hashmap_hash_map_t T) + := + do + let hash ← hashmap_hash_key_fwd key + let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots + let hash_mod ← hash % i + let l ← + vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod + let inserted ← hashmap_hash_map_insert_in_list_fwd T key value l + if inserted + then + do + let i0 ← self.hashmap_hash_map_num_entries + + (Usize.ofInt 1 (by intlit)) + let l0 ← hashmap_hash_map_insert_in_list_back T key value l + let v ← + vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots + hash_mod l0 + Result.ret + { + self + with + hashmap_hash_map_num_entries := i0, hashmap_hash_map_slots := v + } + else + do + let l0 ← hashmap_hash_map_insert_in_list_back T key value l + let v ← + vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots + hash_mod l0 + Result.ret { self with hashmap_hash_map_slots := v } + +/- [core::num::u32::{9}::MAX] -/ +def core_num_u32_max_body : Result U32 := + Result.ret (U32.ofInt 4294967295 (by intlit)) +def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) + +/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/ +divergent def hashmap_hash_map_move_elements_from_list_loop_fwd_back + (T : Type) (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) : + Result (hashmap_hash_map_t T) + := + match h: ls with + | hashmap_list_t.Cons k v tl => + do + let ntable0 ← hashmap_hash_map_insert_no_resize_fwd_back T ntable k v + hashmap_hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl + | hashmap_list_t.Nil => Result.ret ntable + +/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/ +def hashmap_hash_map_move_elements_from_list_fwd_back + (T : Type) (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) : + Result (hashmap_hash_map_t T) + := + hashmap_hash_map_move_elements_from_list_loop_fwd_back T ntable ls + +/- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/ +divergent def hashmap_hash_map_move_elements_loop_fwd_back + (T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) + (i : Usize) : + Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T))) + := + let i0 := vec_len (hashmap_list_t T) slots + if i < i0 + then + do + let l ← vec_index_mut_fwd (hashmap_list_t T) slots i + let ls := mem_replace_fwd (hashmap_list_t T) l hashmap_list_t.Nil + let ntable0 ← + hashmap_hash_map_move_elements_from_list_fwd_back T ntable ls + let i1 ← i + (Usize.ofInt 1 (by intlit)) + let l0 := mem_replace_back (hashmap_list_t T) l hashmap_list_t.Nil + let slots0 ← vec_index_mut_back (hashmap_list_t T) slots i l0 + hashmap_hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1 + else Result.ret (ntable, slots) + +/- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/ +def hashmap_hash_map_move_elements_fwd_back + (T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) + (i : Usize) : + Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T))) + := + hashmap_hash_map_move_elements_loop_fwd_back T ntable slots i + +/- [hashmap_main::hashmap::HashMap::{0}::try_resize] -/ +def hashmap_hash_map_try_resize_fwd_back + (T : Type) (self : hashmap_hash_map_t T) : Result (hashmap_hash_map_t T) := + do + let max_usize ← Scalar.cast .Usize core_num_u32_max_c + let capacity := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots + let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) + let (i, i0) := self.hashmap_hash_map_max_load_factor + let i1 ← n1 / i + if capacity <= i1 + then + do + let i2 ← capacity * (Usize.ofInt 2 (by intlit)) + let ntable ← hashmap_hash_map_new_with_capacity_fwd T i2 i i0 + let (ntable0, _) ← + hashmap_hash_map_move_elements_fwd_back T ntable + self.hashmap_hash_map_slots (Usize.ofInt 0 (by intlit)) + Result.ret + { + ntable0 + with + hashmap_hash_map_num_entries := self.hashmap_hash_map_num_entries, + hashmap_hash_map_max_load_factor := (i, i0) + } + else Result.ret { self with hashmap_hash_map_max_load_factor := (i, i0) } + +/- [hashmap_main::hashmap::HashMap::{0}::insert] -/ +def hashmap_hash_map_insert_fwd_back + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (value : T) : + Result (hashmap_hash_map_t T) + := + do + let self0 ← hashmap_hash_map_insert_no_resize_fwd_back T self key value + let i ← hashmap_hash_map_len_fwd T self0 + if i > self0.hashmap_hash_map_max_load + then hashmap_hash_map_try_resize_fwd_back T self0 + else Result.ret self0 + +/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/ +divergent def hashmap_hash_map_contains_key_in_list_loop_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result Bool := + match h: ls with + | hashmap_list_t.Cons ckey t tl => + if ckey = key + then Result.ret true + else hashmap_hash_map_contains_key_in_list_loop_fwd T key tl + | hashmap_list_t.Nil => Result.ret false + +/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/ +def hashmap_hash_map_contains_key_in_list_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result Bool := + hashmap_hash_map_contains_key_in_list_loop_fwd T key ls + +/- [hashmap_main::hashmap::HashMap::{0}::contains_key] -/ +def hashmap_hash_map_contains_key_fwd + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result Bool := + do + let hash ← hashmap_hash_key_fwd key + let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots + let hash_mod ← hash % i + let l ← + vec_index_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod + hashmap_hash_map_contains_key_in_list_fwd T key l + +/- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/ +divergent def hashmap_hash_map_get_in_list_loop_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result T := + match h: ls with + | hashmap_list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret cvalue + else hashmap_hash_map_get_in_list_loop_fwd T key tl + | hashmap_list_t.Nil => Result.fail Error.panic + +/- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/ +def hashmap_hash_map_get_in_list_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result T := + hashmap_hash_map_get_in_list_loop_fwd T key ls + +/- [hashmap_main::hashmap::HashMap::{0}::get] -/ +def hashmap_hash_map_get_fwd + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result T := + do + let hash ← hashmap_hash_key_fwd key + let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots + let hash_mod ← hash % i + let l ← + vec_index_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod + hashmap_hash_map_get_in_list_fwd T key l + +/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ +divergent def hashmap_hash_map_get_mut_in_list_loop_fwd + (T : Type) (ls : hashmap_list_t T) (key : Usize) : Result T := + match h: ls with + | hashmap_list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret cvalue + else hashmap_hash_map_get_mut_in_list_loop_fwd T tl key + | hashmap_list_t.Nil => Result.fail Error.panic + +/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ +def hashmap_hash_map_get_mut_in_list_fwd + (T : Type) (ls : hashmap_list_t T) (key : Usize) : Result T := + hashmap_hash_map_get_mut_in_list_loop_fwd T ls key + +/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ +divergent def hashmap_hash_map_get_mut_in_list_loop_back + (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) : + Result (hashmap_list_t T) + := + match h: ls with + | hashmap_list_t.Cons ckey cvalue tl => + if ckey = key + then Result.ret (hashmap_list_t.Cons ckey ret0 tl) + else + do + let tl0 ← hashmap_hash_map_get_mut_in_list_loop_back T tl key ret0 + Result.ret (hashmap_list_t.Cons ckey cvalue tl0) + | hashmap_list_t.Nil => Result.fail Error.panic + +/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ +def hashmap_hash_map_get_mut_in_list_back + (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) : + Result (hashmap_list_t T) + := + hashmap_hash_map_get_mut_in_list_loop_back T ls key ret0 + +/- [hashmap_main::hashmap::HashMap::{0}::get_mut] -/ +def hashmap_hash_map_get_mut_fwd + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result T := + do + let hash ← hashmap_hash_key_fwd key + let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots + let hash_mod ← hash % i + let l ← + vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod + hashmap_hash_map_get_mut_in_list_fwd T l key + +/- [hashmap_main::hashmap::HashMap::{0}::get_mut] -/ +def hashmap_hash_map_get_mut_back + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (ret0 : T) : + Result (hashmap_hash_map_t T) + := + do + let hash ← hashmap_hash_key_fwd key + let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots + let hash_mod ← hash % i + let l ← + vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod + let l0 ← hashmap_hash_map_get_mut_in_list_back T l key ret0 + let v ← + vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots + hash_mod l0 + Result.ret { self with hashmap_hash_map_slots := v } + +/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ +divergent def hashmap_hash_map_remove_from_list_loop_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result (Option T) := + match h: ls with + | hashmap_list_t.Cons ckey t tl => + if ckey = key + then + let mv_ls := + mem_replace_fwd (hashmap_list_t T) (hashmap_list_t.Cons ckey t tl) + hashmap_list_t.Nil + match h: mv_ls with + | hashmap_list_t.Cons i cvalue tl0 => Result.ret (Option.some cvalue) + | hashmap_list_t.Nil => Result.fail Error.panic + else hashmap_hash_map_remove_from_list_loop_fwd T key tl + | hashmap_list_t.Nil => Result.ret Option.none + +/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ +def hashmap_hash_map_remove_from_list_fwd + (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result (Option T) := + hashmap_hash_map_remove_from_list_loop_fwd T key ls + +/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ +divergent def hashmap_hash_map_remove_from_list_loop_back + (T : Type) (key : Usize) (ls : hashmap_list_t T) : + Result (hashmap_list_t T) + := + match h: ls with + | hashmap_list_t.Cons ckey t tl => + if ckey = key + then + let mv_ls := + mem_replace_fwd (hashmap_list_t T) (hashmap_list_t.Cons ckey t tl) + hashmap_list_t.Nil + match h: mv_ls with + | hashmap_list_t.Cons i cvalue tl0 => Result.ret tl0 + | hashmap_list_t.Nil => Result.fail Error.panic + else + do + let tl0 ← hashmap_hash_map_remove_from_list_loop_back T key tl + Result.ret (hashmap_list_t.Cons ckey t tl0) + | hashmap_list_t.Nil => Result.ret hashmap_list_t.Nil + +/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ +def hashmap_hash_map_remove_from_list_back + (T : Type) (key : Usize) (ls : hashmap_list_t T) : + Result (hashmap_list_t T) + := + hashmap_hash_map_remove_from_list_loop_back T key ls + +/- [hashmap_main::hashmap::HashMap::{0}::remove] -/ +def hashmap_hash_map_remove_fwd + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result (Option T) := + do + let hash ← hashmap_hash_key_fwd key + let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots + let hash_mod ← hash % i + let l ← + vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod + let x ← hashmap_hash_map_remove_from_list_fwd T key l + match h: x with + | Option.none => Result.ret Option.none + | Option.some x0 => + do + let _ ← self.hashmap_hash_map_num_entries - + (Usize.ofInt 1 (by intlit)) + Result.ret (Option.some x0) + +/- [hashmap_main::hashmap::HashMap::{0}::remove] -/ +def hashmap_hash_map_remove_back + (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : + Result (hashmap_hash_map_t T) + := + do + let hash ← hashmap_hash_key_fwd key + let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots + let hash_mod ← hash % i + let l ← + vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod + let x ← hashmap_hash_map_remove_from_list_fwd T key l + match h: x with + | Option.none => + do + let l0 ← hashmap_hash_map_remove_from_list_back T key l + let v ← + vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots + hash_mod l0 + Result.ret { self with hashmap_hash_map_slots := v } + | Option.some x0 => + do + let i0 ← self.hashmap_hash_map_num_entries - + (Usize.ofInt 1 (by intlit)) + let l0 ← hashmap_hash_map_remove_from_list_back T key l + let v ← + vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots + hash_mod l0 + Result.ret + { + self + with + hashmap_hash_map_num_entries := i0, hashmap_hash_map_slots := v + } + +/- [hashmap_main::hashmap::test1] -/ +def hashmap_test1_fwd : Result Unit := + do + let hm ← hashmap_hash_map_new_fwd U64 + let hm0 ← + hashmap_hash_map_insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit)) + (U64.ofInt 42 (by intlit)) + let hm1 ← + hashmap_hash_map_insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit)) + (U64.ofInt 18 (by intlit)) + let hm2 ← + hashmap_hash_map_insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit)) + (U64.ofInt 138 (by intlit)) + let hm3 ← + hashmap_hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) + (U64.ofInt 256 (by intlit)) + let i ← hashmap_hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) + if not (i = (U64.ofInt 18 (by intlit))) + then Result.fail Error.panic + else + do + let hm4 ← + hashmap_hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit)) + (U64.ofInt 56 (by intlit)) + let i0 ← + hashmap_hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) + if not (i0 = (U64.ofInt 56 (by intlit))) + then Result.fail Error.panic + else + do + let x ← + hashmap_hash_map_remove_fwd U64 hm4 + (Usize.ofInt 1024 (by intlit)) + match h: x with + | Option.none => Result.fail Error.panic + | Option.some x0 => + if not (x0 = (U64.ofInt 56 (by intlit))) + then Result.fail Error.panic + else + do + let hm5 ← + hashmap_hash_map_remove_back U64 hm4 + (Usize.ofInt 1024 (by intlit)) + let i1 ← + hashmap_hash_map_get_fwd U64 hm5 + (Usize.ofInt 0 (by intlit)) + if not (i1 = (U64.ofInt 42 (by intlit))) + then Result.fail Error.panic + else + do + let i2 ← + hashmap_hash_map_get_fwd U64 hm5 + (Usize.ofInt 128 (by intlit)) + if not (i2 = (U64.ofInt 18 (by intlit))) + then Result.fail Error.panic + else + do + let i3 ← + hashmap_hash_map_get_fwd U64 hm5 + (Usize.ofInt 1056 (by intlit)) + if not (i3 = (U64.ofInt 256 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [hashmap_main::hashmap::test1] -/ +#assert (hashmap_test1_fwd == .ret ()) + +/- [hashmap_main::insert_on_disk] -/ +def insert_on_disk_fwd + (key : Usize) (value : U64) (st : State) : Result (State × Unit) := + do + let (st0, hm) ← opaque_defs.hashmap_utils_deserialize_fwd st + let hm0 ← hashmap_hash_map_insert_fwd_back U64 hm key value + let (st1, _) ← opaque_defs.hashmap_utils_serialize_fwd hm0 st0 + Result.ret (st1, ()) + +/- [hashmap_main::main] -/ +def main_fwd : Result Unit := + Result.ret () + +/- Unit test for [hashmap_main::main] -/ +#assert (main_fwd == .ret ()) + diff --git a/tests/lean/HashmapMain/Opaque.lean b/tests/lean/HashmapMain/Opaque.lean new file mode 100644 index 00000000..bef4f3fb --- /dev/null +++ b/tests/lean/HashmapMain/Opaque.lean @@ -0,0 +1,16 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [hashmap_main]: opaque function definitions +import Base +import HashmapMain.Types +open Primitives + +structure OpaqueDefs where + + /- [hashmap_main::hashmap_utils::deserialize] -/ + hashmap_utils_deserialize_fwd + : State -> Result (State × (hashmap_hash_map_t U64)) + + /- [hashmap_main::hashmap_utils::serialize] -/ + hashmap_utils_serialize_fwd + : hashmap_hash_map_t U64 -> State -> Result (State × Unit) + diff --git a/tests/lean/HashmapMain/Types.lean b/tests/lean/HashmapMain/Types.lean new file mode 100644 index 00000000..858e1c51 --- /dev/null +++ b/tests/lean/HashmapMain/Types.lean @@ -0,0 +1,20 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [hashmap_main]: type definitions +import Base +open Primitives + +/- [hashmap_main::hashmap::List] -/ +inductive hashmap_list_t (T : Type) := +| Cons : Usize -> T -> hashmap_list_t T -> hashmap_list_t T +| Nil : hashmap_list_t T + +/- [hashmap_main::hashmap::HashMap] -/ +structure hashmap_hash_map_t (T : Type) where + hashmap_hash_map_num_entries : Usize + hashmap_hash_map_max_load_factor : (Usize × Usize) + hashmap_hash_map_max_load : Usize + hashmap_hash_map_slots : Vec (hashmap_list_t T) + +/- The state type used in the state-error monad -/ +axiom State : Type + diff --git a/tests/lean/Loops.lean b/tests/lean/Loops.lean new file mode 100644 index 00000000..60c73776 --- /dev/null +++ b/tests/lean/Loops.lean @@ -0,0 +1 @@ +import Loops.Funs diff --git a/tests/lean/Loops/Funs.lean b/tests/lean/Loops/Funs.lean new file mode 100644 index 00000000..7d5f7595 --- /dev/null +++ b/tests/lean/Loops/Funs.lean @@ -0,0 +1,624 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [loops]: function definitions +import Base +import Loops.Types +open Primitives + +/- [loops::sum] -/ +divergent def sum_loop_fwd (max : U32) (i : U32) (s : U32) : Result U32 := + if i < max + then + do + let s0 ← s + i + let i0 ← i + (U32.ofInt 1 (by intlit)) + sum_loop_fwd max i0 s0 + else s * (U32.ofInt 2 (by intlit)) + +/- [loops::sum] -/ +def sum_fwd (max : U32) : Result U32 := + sum_loop_fwd max (U32.ofInt 0 (by intlit)) (U32.ofInt 0 (by intlit)) + +/- [loops::sum_with_mut_borrows] -/ +divergent def sum_with_mut_borrows_loop_fwd + (max : U32) (mi : U32) (ms : U32) : Result U32 := + if mi < max + then + do + let ms0 ← ms + mi + let mi0 ← mi + (U32.ofInt 1 (by intlit)) + sum_with_mut_borrows_loop_fwd max mi0 ms0 + else ms * (U32.ofInt 2 (by intlit)) + +/- [loops::sum_with_mut_borrows] -/ +def sum_with_mut_borrows_fwd (max : U32) : Result U32 := + sum_with_mut_borrows_loop_fwd max (U32.ofInt 0 (by intlit)) + (U32.ofInt 0 (by intlit)) + +/- [loops::sum_with_shared_borrows] -/ +divergent def sum_with_shared_borrows_loop_fwd + (max : U32) (i : U32) (s : U32) : Result U32 := + if i < max + then + do + let i0 ← i + (U32.ofInt 1 (by intlit)) + let s0 ← s + i0 + sum_with_shared_borrows_loop_fwd max i0 s0 + else s * (U32.ofInt 2 (by intlit)) + +/- [loops::sum_with_shared_borrows] -/ +def sum_with_shared_borrows_fwd (max : U32) : Result U32 := + sum_with_shared_borrows_loop_fwd max (U32.ofInt 0 (by intlit)) + (U32.ofInt 0 (by intlit)) + +/- [loops::clear] -/ +divergent def clear_loop_fwd_back + (v : Vec U32) (i : Usize) : Result (Vec U32) := + let i0 := vec_len U32 v + if i < i0 + then + do + let i1 ← i + (Usize.ofInt 1 (by intlit)) + let v0 ← vec_index_mut_back U32 v i (U32.ofInt 0 (by intlit)) + clear_loop_fwd_back v0 i1 + else Result.ret v + +/- [loops::clear] -/ +def clear_fwd_back (v : Vec U32) : Result (Vec U32) := + clear_loop_fwd_back v (Usize.ofInt 0 (by intlit)) + +/- [loops::list_mem] -/ +divergent def list_mem_loop_fwd (x : U32) (ls : list_t U32) : Result Bool := + match h: ls with + | list_t.Cons y tl => + if y = x + then Result.ret true + else list_mem_loop_fwd x tl + | list_t.Nil => Result.ret false + +/- [loops::list_mem] -/ +def list_mem_fwd (x : U32) (ls : list_t U32) : Result Bool := + list_mem_loop_fwd x ls + +/- [loops::list_nth_mut_loop] -/ +divergent def list_nth_mut_loop_loop_fwd + (T : Type) (ls : list_t T) (i : U32) : Result T := + match h: ls with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret x + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_mut_loop_loop_fwd T tl i0 + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop] -/ +def list_nth_mut_loop_fwd (T : Type) (ls : list_t T) (i : U32) : Result T := + list_nth_mut_loop_loop_fwd T ls i + +/- [loops::list_nth_mut_loop] -/ +divergent def list_nth_mut_loop_loop_back + (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := + match h: ls with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl0 ← list_nth_mut_loop_loop_back T tl i0 ret0 + Result.ret (list_t.Cons x tl0) + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop] -/ +def list_nth_mut_loop_back + (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := + list_nth_mut_loop_loop_back T ls i ret0 + +/- [loops::list_nth_shared_loop] -/ +divergent def list_nth_shared_loop_loop_fwd + (T : Type) (ls : list_t T) (i : U32) : Result T := + match h: ls with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret x + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_shared_loop_loop_fwd T tl i0 + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_shared_loop] -/ +def list_nth_shared_loop_fwd (T : Type) (ls : list_t T) (i : U32) : Result T := + list_nth_shared_loop_loop_fwd T ls i + +/- [loops::get_elem_mut] -/ +divergent def get_elem_mut_loop_fwd + (x : Usize) (ls : list_t Usize) : Result Usize := + match h: ls with + | list_t.Cons y tl => + if y = x + then Result.ret y + else get_elem_mut_loop_fwd x tl + | list_t.Nil => Result.fail Error.panic + +/- [loops::get_elem_mut] -/ +def get_elem_mut_fwd (slots : Vec (list_t Usize)) (x : Usize) : Result Usize := + do + let l ← + vec_index_mut_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) + get_elem_mut_loop_fwd x l + +/- [loops::get_elem_mut] -/ +divergent def get_elem_mut_loop_back + (x : Usize) (ls : list_t Usize) (ret0 : Usize) : Result (list_t Usize) := + match h: ls with + | list_t.Cons y tl => + if y = x + then Result.ret (list_t.Cons ret0 tl) + else + do + let tl0 ← get_elem_mut_loop_back x tl ret0 + Result.ret (list_t.Cons y tl0) + | list_t.Nil => Result.fail Error.panic + +/- [loops::get_elem_mut] -/ +def get_elem_mut_back + (slots : Vec (list_t Usize)) (x : Usize) (ret0 : Usize) : + Result (Vec (list_t Usize)) + := + do + let l ← + vec_index_mut_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) + let l0 ← get_elem_mut_loop_back x l ret0 + vec_index_mut_back (list_t Usize) slots (Usize.ofInt 0 (by intlit)) l0 + +/- [loops::get_elem_shared] -/ +divergent def get_elem_shared_loop_fwd + (x : Usize) (ls : list_t Usize) : Result Usize := + match h: ls with + | list_t.Cons y tl => + if y = x + then Result.ret y + else get_elem_shared_loop_fwd x tl + | list_t.Nil => Result.fail Error.panic + +/- [loops::get_elem_shared] -/ +def get_elem_shared_fwd + (slots : Vec (list_t Usize)) (x : Usize) : Result Usize := + do + let l ← vec_index_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) + get_elem_shared_loop_fwd x l + +/- [loops::id_mut] -/ +def id_mut_fwd (T : Type) (ls : list_t T) : Result (list_t T) := + Result.ret ls + +/- [loops::id_mut] -/ +def id_mut_back + (T : Type) (ls : list_t T) (ret0 : list_t T) : Result (list_t T) := + Result.ret ret0 + +/- [loops::id_shared] -/ +def id_shared_fwd (T : Type) (ls : list_t T) : Result (list_t T) := + Result.ret ls + +/- [loops::list_nth_mut_loop_with_id] -/ +divergent def list_nth_mut_loop_with_id_loop_fwd + (T : Type) (i : U32) (ls : list_t T) : Result T := + match h: ls with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret x + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_mut_loop_with_id_loop_fwd T i0 tl + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop_with_id] -/ +def list_nth_mut_loop_with_id_fwd + (T : Type) (ls : list_t T) (i : U32) : Result T := + do + let ls0 ← id_mut_fwd T ls + list_nth_mut_loop_with_id_loop_fwd T i ls0 + +/- [loops::list_nth_mut_loop_with_id] -/ +divergent def list_nth_mut_loop_with_id_loop_back + (T : Type) (i : U32) (ls : list_t T) (ret0 : T) : Result (list_t T) := + match h: ls with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl0 ← list_nth_mut_loop_with_id_loop_back T i0 tl ret0 + Result.ret (list_t.Cons x tl0) + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop_with_id] -/ +def list_nth_mut_loop_with_id_back + (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := + do + let ls0 ← id_mut_fwd T ls + let l ← list_nth_mut_loop_with_id_loop_back T i ls0 ret0 + id_mut_back T ls l + +/- [loops::list_nth_shared_loop_with_id] -/ +divergent def list_nth_shared_loop_with_id_loop_fwd + (T : Type) (i : U32) (ls : list_t T) : Result T := + match h: ls with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret x + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_shared_loop_with_id_loop_fwd T i0 tl + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_shared_loop_with_id] -/ +def list_nth_shared_loop_with_id_fwd + (T : Type) (ls : list_t T) (i : U32) : Result T := + do + let ls0 ← id_shared_fwd T ls + list_nth_shared_loop_with_id_loop_fwd T i ls0 + +/- [loops::list_nth_mut_loop_pair] -/ +divergent def list_nth_mut_loop_pair_loop_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (x0, x1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_mut_loop_pair_loop_fwd T tl0 tl1 i0 + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop_pair] -/ +def list_nth_mut_loop_pair_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + list_nth_mut_loop_pair_loop_fwd T ls0 ls1 i + +/- [loops::list_nth_mut_loop_pair] -/ +divergent def list_nth_mut_loop_pair_loop_back'a + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl0) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl00 ← list_nth_mut_loop_pair_loop_back'a T tl0 tl1 i0 ret0 + Result.ret (list_t.Cons x0 tl00) + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop_pair] -/ +def list_nth_mut_loop_pair_back'a + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + list_nth_mut_loop_pair_loop_back'a T ls0 ls1 i ret0 + +/- [loops::list_nth_mut_loop_pair] -/ +divergent def list_nth_mut_loop_pair_loop_back'b + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl10 ← list_nth_mut_loop_pair_loop_back'b T tl0 tl1 i0 ret0 + Result.ret (list_t.Cons x1 tl10) + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop_pair] -/ +def list_nth_mut_loop_pair_back'b + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + list_nth_mut_loop_pair_loop_back'b T ls0 ls1 i ret0 + +/- [loops::list_nth_shared_loop_pair] -/ +divergent def list_nth_shared_loop_pair_loop_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (x0, x1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_shared_loop_pair_loop_fwd T tl0 tl1 i0 + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_shared_loop_pair] -/ +def list_nth_shared_loop_pair_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + list_nth_shared_loop_pair_loop_fwd T ls0 ls1 i + +/- [loops::list_nth_mut_loop_pair_merge] -/ +divergent def list_nth_mut_loop_pair_merge_loop_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (x0, x1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0 + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop_pair_merge] -/ +def list_nth_mut_loop_pair_merge_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + list_nth_mut_loop_pair_merge_loop_fwd T ls0 ls1 i + +/- [loops::list_nth_mut_loop_pair_merge] -/ +divergent def list_nth_mut_loop_pair_merge_loop_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : (T × T)) : + Result ((list_t T) × (list_t T)) + := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then + let (t, t0) := ret0 + Result.ret (list_t.Cons t tl0, list_t.Cons t0 tl1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let (tl00, tl10) ← + list_nth_mut_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 + Result.ret (list_t.Cons x0 tl00, list_t.Cons x1 tl10) + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_loop_pair_merge] -/ +def list_nth_mut_loop_pair_merge_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : (T × T)) : + Result ((list_t T) × (list_t T)) + := + list_nth_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0 + +/- [loops::list_nth_shared_loop_pair_merge] -/ +divergent def list_nth_shared_loop_pair_merge_loop_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (x0, x1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0 + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_shared_loop_pair_merge] -/ +def list_nth_shared_loop_pair_merge_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + list_nth_shared_loop_pair_merge_loop_fwd T ls0 ls1 i + +/- [loops::list_nth_mut_shared_loop_pair] -/ +divergent def list_nth_mut_shared_loop_pair_loop_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (x0, x1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_mut_shared_loop_pair_loop_fwd T tl0 tl1 i0 + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_shared_loop_pair] -/ +def list_nth_mut_shared_loop_pair_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + list_nth_mut_shared_loop_pair_loop_fwd T ls0 ls1 i + +/- [loops::list_nth_mut_shared_loop_pair] -/ +divergent def list_nth_mut_shared_loop_pair_loop_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl0) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl00 ← + list_nth_mut_shared_loop_pair_loop_back T tl0 tl1 i0 ret0 + Result.ret (list_t.Cons x0 tl00) + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_shared_loop_pair] -/ +def list_nth_mut_shared_loop_pair_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + list_nth_mut_shared_loop_pair_loop_back T ls0 ls1 i ret0 + +/- [loops::list_nth_mut_shared_loop_pair_merge] -/ +divergent def list_nth_mut_shared_loop_pair_merge_loop_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (x0, x1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_mut_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0 + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_shared_loop_pair_merge] -/ +def list_nth_mut_shared_loop_pair_merge_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + list_nth_mut_shared_loop_pair_merge_loop_fwd T ls0 ls1 i + +/- [loops::list_nth_mut_shared_loop_pair_merge] -/ +divergent def list_nth_mut_shared_loop_pair_merge_loop_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl0) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl00 ← + list_nth_mut_shared_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 + Result.ret (list_t.Cons x0 tl00) + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_mut_shared_loop_pair_merge] -/ +def list_nth_mut_shared_loop_pair_merge_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + list_nth_mut_shared_loop_pair_merge_loop_back T ls0 ls1 i ret0 + +/- [loops::list_nth_shared_mut_loop_pair] -/ +divergent def list_nth_shared_mut_loop_pair_loop_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (x0, x1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_shared_mut_loop_pair_loop_fwd T tl0 tl1 i0 + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_shared_mut_loop_pair] -/ +def list_nth_shared_mut_loop_pair_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + list_nth_shared_mut_loop_pair_loop_fwd T ls0 ls1 i + +/- [loops::list_nth_shared_mut_loop_pair] -/ +divergent def list_nth_shared_mut_loop_pair_loop_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl10 ← + list_nth_shared_mut_loop_pair_loop_back T tl0 tl1 i0 ret0 + Result.ret (list_t.Cons x1 tl10) + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_shared_mut_loop_pair] -/ +def list_nth_shared_mut_loop_pair_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + list_nth_shared_mut_loop_pair_loop_back T ls0 ls1 i ret0 + +/- [loops::list_nth_shared_mut_loop_pair_merge] -/ +divergent def list_nth_shared_mut_loop_pair_merge_loop_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (x0, x1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_shared_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0 + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_shared_mut_loop_pair_merge] -/ +def list_nth_shared_mut_loop_pair_merge_fwd + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := + list_nth_shared_mut_loop_pair_merge_loop_fwd T ls0 ls1 i + +/- [loops::list_nth_shared_mut_loop_pair_merge] -/ +divergent def list_nth_shared_mut_loop_pair_merge_loop_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + match h: ls0 with + | list_t.Cons x0 tl0 => + match h: ls1 with + | list_t.Cons x1 tl1 => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl1) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl10 ← + list_nth_shared_mut_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 + Result.ret (list_t.Cons x1 tl10) + | list_t.Nil => Result.fail Error.panic + | list_t.Nil => Result.fail Error.panic + +/- [loops::list_nth_shared_mut_loop_pair_merge] -/ +def list_nth_shared_mut_loop_pair_merge_back + (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : + Result (list_t T) + := + list_nth_shared_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0 + diff --git a/tests/lean/Loops/Types.lean b/tests/lean/Loops/Types.lean new file mode 100644 index 00000000..e14f9766 --- /dev/null +++ b/tests/lean/Loops/Types.lean @@ -0,0 +1,10 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [loops]: type definitions +import Base +open Primitives + +/- [loops::List] -/ +inductive list_t (T : Type) := +| Cons : T -> list_t T -> list_t T +| Nil : list_t T + diff --git a/tests/lean/Makefile b/tests/lean/Makefile index ed3b3e3b..3ccfbec2 100644 --- a/tests/lean/Makefile +++ b/tests/lean/Makefile @@ -1,40 +1,35 @@ ALL_DIRS ?= $(filter-out %~ lean-toolchain% Makefile%, $(wildcard *)) +# TODO: remove UPDATE_DIRS = $(addprefix update-,$(ALL_DIRS)) +# TODO: remove VERIFY_DIRS = $(addprefix verif-,$(ALL_DIRS)) +# TODO: remove CLEAN_DIRS = $(addprefix clean-,$(ALL_DIRS)) +# TODO: remove COPY_LEAN_TOOLCHAIN = $(addprefix copy-lean-toolchain-,$(ALL_DIRS)) .PHONY: all all: prepare-projects verify .PHONY: prepare-projects -prepare-projects: $(COPY_LEAN_TOOLCHAIN) +prepare-projects: copy-lean-toolchain .PHONY: prepare-projects -copy-lean-toolchain-%: - cp lean-toolchain $* +copy-lean-toolchain: + cp ../../backends/lean/lean-toolchain . .PHONY: update -update: $(UPDATE_DIRS) - -.PHONY: update-% -update-%: - cd $* && lake update +update: + lake update .PHONY: verify -verify: $(VERIFY_DIRS) - -.PHONY: verif-% -verif-%: - cd $* && lake build +verify: + lake build .PHONY: clean -clean: $(CLEAN_DIRS) - -.PHONY: clean-% -clean-%: - cd $* && lake clean +clean: + lake clean diff --git a/tests/lean/NoNestedBorrows.lean b/tests/lean/NoNestedBorrows.lean new file mode 100644 index 00000000..67ef4b20 --- /dev/null +++ b/tests/lean/NoNestedBorrows.lean @@ -0,0 +1,541 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [no_nested_borrows] +import Base +open Primitives + +/- [no_nested_borrows::Pair] -/ +structure pair_t (T1 T2 : Type) where + pair_x : T1 + pair_y : T2 + +/- [no_nested_borrows::List] -/ +inductive list_t (T : Type) := +| Cons : T -> list_t T -> list_t T +| Nil : list_t T + +/- [no_nested_borrows::One] -/ +inductive one_t (T1 : Type) := +| One : T1 -> one_t T1 + +/- [no_nested_borrows::EmptyEnum] -/ +inductive empty_enum_t := +| Empty : empty_enum_t + +/- [no_nested_borrows::Enum] -/ +inductive enum_t := +| Variant1 : enum_t +| Variant2 : enum_t + +/- [no_nested_borrows::EmptyStruct] -/ +structure empty_struct_t where + +/- [no_nested_borrows::Sum] -/ +inductive sum_t (T1 T2 : Type) := +| Left : T1 -> sum_t T1 T2 +| Right : T2 -> sum_t T1 T2 + +/- [no_nested_borrows::neg_test] -/ +def neg_test_fwd (x : I32) : Result I32 := + - x + +/- [no_nested_borrows::add_test] -/ +def add_test_fwd (x : U32) (y : U32) : Result U32 := + x + y + +/- [no_nested_borrows::subs_test] -/ +def subs_test_fwd (x : U32) (y : U32) : Result U32 := + x - y + +/- [no_nested_borrows::div_test] -/ +def div_test_fwd (x : U32) (y : U32) : Result U32 := + x / y + +/- [no_nested_borrows::div_test1] -/ +def div_test1_fwd (x : U32) : Result U32 := + x / (U32.ofInt 2 (by intlit)) + +/- [no_nested_borrows::rem_test] -/ +def rem_test_fwd (x : U32) (y : U32) : Result U32 := + x % y + +/- [no_nested_borrows::cast_test] -/ +def cast_test_fwd (x : U32) : Result I32 := + Scalar.cast .I32 x + +/- [no_nested_borrows::test2] -/ +def test2_fwd : Result Unit := + do + let _ ← (U32.ofInt 23 (by intlit)) + (U32.ofInt 44 (by intlit)) + Result.ret () + +/- Unit test for [no_nested_borrows::test2] -/ +#assert (test2_fwd == .ret ()) + +/- [no_nested_borrows::get_max] -/ +def get_max_fwd (x : U32) (y : U32) : Result U32 := + if x >= y + then Result.ret x + else Result.ret y + +/- [no_nested_borrows::test3] -/ +def test3_fwd : Result Unit := + do + let x ← get_max_fwd (U32.ofInt 4 (by intlit)) (U32.ofInt 3 (by intlit)) + let y ← get_max_fwd (U32.ofInt 10 (by intlit)) (U32.ofInt 11 (by intlit)) + let z ← x + y + if not (z = (U32.ofInt 15 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::test3] -/ +#assert (test3_fwd == .ret ()) + +/- [no_nested_borrows::test_neg1] -/ +def test_neg1_fwd : Result Unit := + do + let y ← - (I32.ofInt 3 (by intlit)) + if not (y = (I32.ofInt (-(3:Int)) (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::test_neg1] -/ +#assert (test_neg1_fwd == .ret ()) + +/- [no_nested_borrows::refs_test1] -/ +def refs_test1_fwd : Result Unit := + if not ((I32.ofInt 1 (by intlit)) = (I32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::refs_test1] -/ +#assert (refs_test1_fwd == .ret ()) + +/- [no_nested_borrows::refs_test2] -/ +def refs_test2_fwd : Result Unit := + if not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) + then Result.fail Error.panic + else + if not ((I32.ofInt 0 (by intlit)) = (I32.ofInt 0 (by intlit))) + then Result.fail Error.panic + else + if not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) + then Result.fail Error.panic + else + if not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::refs_test2] -/ +#assert (refs_test2_fwd == .ret ()) + +/- [no_nested_borrows::test_list1] -/ +def test_list1_fwd : Result Unit := + Result.ret () + +/- Unit test for [no_nested_borrows::test_list1] -/ +#assert (test_list1_fwd == .ret ()) + +/- [no_nested_borrows::test_box1] -/ +def test_box1_fwd : Result Unit := + let b := (I32.ofInt 1 (by intlit)) + let x := b + if not (x = (I32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::test_box1] -/ +#assert (test_box1_fwd == .ret ()) + +/- [no_nested_borrows::copy_int] -/ +def copy_int_fwd (x : I32) : Result I32 := + Result.ret x + +/- [no_nested_borrows::test_unreachable] -/ +def test_unreachable_fwd (b : Bool) : Result Unit := + if b + then Result.fail Error.panic + else Result.ret () + +/- [no_nested_borrows::test_panic] -/ +def test_panic_fwd (b : Bool) : Result Unit := + if b + then Result.fail Error.panic + else Result.ret () + +/- [no_nested_borrows::test_copy_int] -/ +def test_copy_int_fwd : Result Unit := + do + let y ← copy_int_fwd (I32.ofInt 0 (by intlit)) + if not ((I32.ofInt 0 (by intlit)) = y) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::test_copy_int] -/ +#assert (test_copy_int_fwd == .ret ()) + +/- [no_nested_borrows::is_cons] -/ +def is_cons_fwd (T : Type) (l : list_t T) : Result Bool := + match h: l with + | list_t.Cons t l0 => Result.ret true + | list_t.Nil => Result.ret false + +/- [no_nested_borrows::test_is_cons] -/ +def test_is_cons_fwd : Result Unit := + do + let l := list_t.Nil + let b ← is_cons_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l) + if not b + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::test_is_cons] -/ +#assert (test_is_cons_fwd == .ret ()) + +/- [no_nested_borrows::split_list] -/ +def split_list_fwd (T : Type) (l : list_t T) : Result (T × (list_t T)) := + match h: l with + | list_t.Cons hd tl => Result.ret (hd, tl) + | list_t.Nil => Result.fail Error.panic + +/- [no_nested_borrows::test_split_list] -/ +def test_split_list_fwd : Result Unit := + do + let l := list_t.Nil + let p ← split_list_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l) + let (hd, _) := p + if not (hd = (I32.ofInt 0 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::test_split_list] -/ +#assert (test_split_list_fwd == .ret ()) + +/- [no_nested_borrows::choose] -/ +def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T := + if b + then Result.ret x + else Result.ret y + +/- [no_nested_borrows::choose] -/ +def choose_back + (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) := + if b + then Result.ret (ret0, y) + else Result.ret (x, ret0) + +/- [no_nested_borrows::choose_test] -/ +def choose_test_fwd : Result Unit := + do + let z ← + choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit)) + let z0 ← z + (I32.ofInt 1 (by intlit)) + if not (z0 = (I32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else + do + let (x, y) ← + choose_back I32 true (I32.ofInt 0 (by intlit)) + (I32.ofInt 0 (by intlit)) z0 + if not (x = (I32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else + if not (y = (I32.ofInt 0 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::choose_test] -/ +#assert (choose_test_fwd == .ret ()) + +/- [no_nested_borrows::test_char] -/ +def test_char_fwd : Result Char := + Result.ret 'a' + +mutual + +/- [no_nested_borrows::NodeElem] -/ +inductive node_elem_t (T : Type) := +| Cons : tree_t T -> node_elem_t T -> node_elem_t T +| Nil : node_elem_t T + +/- [no_nested_borrows::Tree] -/ +inductive tree_t (T : Type) := +| Leaf : T -> tree_t T +| Node : T -> node_elem_t T -> tree_t T -> tree_t T + +end + +/- [no_nested_borrows::list_length] -/ +divergent def list_length_fwd (T : Type) (l : list_t T) : Result U32 := + match h: l with + | list_t.Cons t l1 => + do + let i ← list_length_fwd T l1 + (U32.ofInt 1 (by intlit)) + i + | list_t.Nil => Result.ret (U32.ofInt 0 (by intlit)) + +/- [no_nested_borrows::list_nth_shared] -/ +divergent def list_nth_shared_fwd + (T : Type) (l : list_t T) (i : U32) : Result T := + match h: l with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret x + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_shared_fwd T tl i0 + | list_t.Nil => Result.fail Error.panic + +/- [no_nested_borrows::list_nth_mut] -/ +divergent def list_nth_mut_fwd + (T : Type) (l : list_t T) (i : U32) : Result T := + match h: l with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret x + else do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_mut_fwd T tl i0 + | list_t.Nil => Result.fail Error.panic + +/- [no_nested_borrows::list_nth_mut] -/ +divergent def list_nth_mut_back + (T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := + match h: l with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl0 ← list_nth_mut_back T tl i0 ret0 + Result.ret (list_t.Cons x tl0) + | list_t.Nil => Result.fail Error.panic + +/- [no_nested_borrows::list_rev_aux] -/ +divergent def list_rev_aux_fwd + (T : Type) (li : list_t T) (lo : list_t T) : Result (list_t T) := + match h: li with + | list_t.Cons hd tl => list_rev_aux_fwd T tl (list_t.Cons hd lo) + | list_t.Nil => Result.ret lo + +/- [no_nested_borrows::list_rev] -/ +def list_rev_fwd_back (T : Type) (l : list_t T) : Result (list_t T) := + let li := mem_replace_fwd (list_t T) l list_t.Nil + list_rev_aux_fwd T li list_t.Nil + +/- [no_nested_borrows::test_list_functions] -/ +def test_list_functions_fwd : Result Unit := + do + let l := list_t.Nil + let l0 := list_t.Cons (I32.ofInt 2 (by intlit)) l + let l1 := list_t.Cons (I32.ofInt 1 (by intlit)) l0 + let i ← list_length_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l1) + if not (i = (U32.ofInt 3 (by intlit))) + then Result.fail Error.panic + else + do + let i0 ← + list_nth_shared_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l1) + (U32.ofInt 0 (by intlit)) + if not (i0 = (I32.ofInt 0 (by intlit))) + then Result.fail Error.panic + else + do + let i1 ← + list_nth_shared_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) + l1) (U32.ofInt 1 (by intlit)) + if not (i1 = (I32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else + do + let i2 ← + list_nth_shared_fwd I32 (list_t.Cons + (I32.ofInt 0 (by intlit)) l1) (U32.ofInt 2 (by intlit)) + if not (i2 = (I32.ofInt 2 (by intlit))) + then Result.fail Error.panic + else + do + let ls ← + list_nth_mut_back I32 (list_t.Cons + (I32.ofInt 0 (by intlit)) l1) (U32.ofInt 1 (by intlit)) + (I32.ofInt 3 (by intlit)) + let i3 ← + list_nth_shared_fwd I32 ls (U32.ofInt 0 (by intlit)) + if not (i3 = (I32.ofInt 0 (by intlit))) + then Result.fail Error.panic + else + do + let i4 ← + list_nth_shared_fwd I32 ls (U32.ofInt 1 (by intlit)) + if not (i4 = (I32.ofInt 3 (by intlit))) + then Result.fail Error.panic + else + do + let i5 ← + list_nth_shared_fwd I32 ls + (U32.ofInt 2 (by intlit)) + if not (i5 = (I32.ofInt 2 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::test_list_functions] -/ +#assert (test_list_functions_fwd == .ret ()) + +/- [no_nested_borrows::id_mut_pair1] -/ +def id_mut_pair1_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) := + Result.ret (x, y) + +/- [no_nested_borrows::id_mut_pair1] -/ +def id_mut_pair1_back + (T1 T2 : Type) (x : T1) (y : T2) (ret0 : (T1 × T2)) : Result (T1 × T2) := + let (t, t0) := ret0 + Result.ret (t, t0) + +/- [no_nested_borrows::id_mut_pair2] -/ +def id_mut_pair2_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) := + let (t, t0) := p + Result.ret (t, t0) + +/- [no_nested_borrows::id_mut_pair2] -/ +def id_mut_pair2_back + (T1 T2 : Type) (p : (T1 × T2)) (ret0 : (T1 × T2)) : Result (T1 × T2) := + let (t, t0) := ret0 + Result.ret (t, t0) + +/- [no_nested_borrows::id_mut_pair3] -/ +def id_mut_pair3_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) := + Result.ret (x, y) + +/- [no_nested_borrows::id_mut_pair3] -/ +def id_mut_pair3_back'a + (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T1) : Result T1 := + Result.ret ret0 + +/- [no_nested_borrows::id_mut_pair3] -/ +def id_mut_pair3_back'b + (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T2) : Result T2 := + Result.ret ret0 + +/- [no_nested_borrows::id_mut_pair4] -/ +def id_mut_pair4_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) := + let (t, t0) := p + Result.ret (t, t0) + +/- [no_nested_borrows::id_mut_pair4] -/ +def id_mut_pair4_back'a + (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T1) : Result T1 := + Result.ret ret0 + +/- [no_nested_borrows::id_mut_pair4] -/ +def id_mut_pair4_back'b + (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T2) : Result T2 := + Result.ret ret0 + +/- [no_nested_borrows::StructWithTuple] -/ +structure struct_with_tuple_t (T1 T2 : Type) where + struct_with_tuple_p : (T1 × T2) + +/- [no_nested_borrows::new_tuple1] -/ +def new_tuple1_fwd : Result (struct_with_tuple_t U32 U32) := + Result.ret + { + struct_with_tuple_p := + ((U32.ofInt 1 (by intlit)), (U32.ofInt 2 (by intlit))) + } + +/- [no_nested_borrows::new_tuple2] -/ +def new_tuple2_fwd : Result (struct_with_tuple_t I16 I16) := + Result.ret + { + struct_with_tuple_p := + ((I16.ofInt 1 (by intlit)), (I16.ofInt 2 (by intlit))) + } + +/- [no_nested_borrows::new_tuple3] -/ +def new_tuple3_fwd : Result (struct_with_tuple_t U64 I64) := + Result.ret + { + struct_with_tuple_p := + ((U64.ofInt 1 (by intlit)), (I64.ofInt 2 (by intlit))) + } + +/- [no_nested_borrows::StructWithPair] -/ +structure struct_with_pair_t (T1 T2 : Type) where + struct_with_pair_p : pair_t T1 T2 + +/- [no_nested_borrows::new_pair1] -/ +def new_pair1_fwd : Result (struct_with_pair_t U32 U32) := + Result.ret + { + struct_with_pair_p := + { + pair_x := (U32.ofInt 1 (by intlit)), + pair_y := (U32.ofInt 2 (by intlit)) + } + } + +/- [no_nested_borrows::test_constants] -/ +def test_constants_fwd : Result Unit := + do + let swt ← new_tuple1_fwd + let (i, _) := swt.struct_with_tuple_p + if not (i = (U32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else + do + let swt0 ← new_tuple2_fwd + let (i0, _) := swt0.struct_with_tuple_p + if not (i0 = (I16.ofInt 1 (by intlit))) + then Result.fail Error.panic + else + do + let swt1 ← new_tuple3_fwd + let (i1, _) := swt1.struct_with_tuple_p + if not (i1 = (U64.ofInt 1 (by intlit))) + then Result.fail Error.panic + else + do + let swp ← new_pair1_fwd + if not (swp.struct_with_pair_p.pair_x = + (U32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [no_nested_borrows::test_constants] -/ +#assert (test_constants_fwd == .ret ()) + +/- [no_nested_borrows::test_weird_borrows1] -/ +def test_weird_borrows1_fwd : Result Unit := + Result.ret () + +/- Unit test for [no_nested_borrows::test_weird_borrows1] -/ +#assert (test_weird_borrows1_fwd == .ret ()) + +/- [no_nested_borrows::test_mem_replace] -/ +def test_mem_replace_fwd_back (px : U32) : Result U32 := + let y := mem_replace_fwd U32 px (U32.ofInt 1 (by intlit)) + if not (y = (U32.ofInt 0 (by intlit))) + then Result.fail Error.panic + else Result.ret (U32.ofInt 2 (by intlit)) + +/- [no_nested_borrows::test_shared_borrow_bool1] -/ +def test_shared_borrow_bool1_fwd (b : Bool) : Result U32 := + if b + then Result.ret (U32.ofInt 0 (by intlit)) + else Result.ret (U32.ofInt 1 (by intlit)) + +/- [no_nested_borrows::test_shared_borrow_bool2] -/ +def test_shared_borrow_bool2_fwd : Result U32 := + Result.ret (U32.ofInt 0 (by intlit)) + +/- [no_nested_borrows::test_shared_borrow_enum1] -/ +def test_shared_borrow_enum1_fwd (l : list_t U32) : Result U32 := + match h: l with + | list_t.Cons i l0 => Result.ret (U32.ofInt 1 (by intlit)) + | list_t.Nil => Result.ret (U32.ofInt 0 (by intlit)) + +/- [no_nested_borrows::test_shared_borrow_enum2] -/ +def test_shared_borrow_enum2_fwd : Result U32 := + Result.ret (U32.ofInt 0 (by intlit)) + diff --git a/tests/lean/Paper.lean b/tests/lean/Paper.lean new file mode 100644 index 00000000..9019b694 --- /dev/null +++ b/tests/lean/Paper.lean @@ -0,0 +1,125 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [paper] +import Base +open Primitives + +/- [paper::ref_incr] -/ +def ref_incr_fwd_back (x : I32) : Result I32 := + x + (I32.ofInt 1 (by intlit)) + +/- [paper::test_incr] -/ +def test_incr_fwd : Result Unit := + do + let x ← ref_incr_fwd_back (I32.ofInt 0 (by intlit)) + if not (x = (I32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [paper::test_incr] -/ +#assert (test_incr_fwd == .ret ()) + +/- [paper::choose] -/ +def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T := + if b + then Result.ret x + else Result.ret y + +/- [paper::choose] -/ +def choose_back + (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) := + if b + then Result.ret (ret0, y) + else Result.ret (x, ret0) + +/- [paper::test_choose] -/ +def test_choose_fwd : Result Unit := + do + let z ← + choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit)) + let z0 ← z + (I32.ofInt 1 (by intlit)) + if not (z0 = (I32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else + do + let (x, y) ← + choose_back I32 true (I32.ofInt 0 (by intlit)) + (I32.ofInt 0 (by intlit)) z0 + if not (x = (I32.ofInt 1 (by intlit))) + then Result.fail Error.panic + else + if not (y = (I32.ofInt 0 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [paper::test_choose] -/ +#assert (test_choose_fwd == .ret ()) + +/- [paper::List] -/ +inductive list_t (T : Type) := +| Cons : T -> list_t T -> list_t T +| Nil : list_t T + +/- [paper::list_nth_mut] -/ +divergent def list_nth_mut_fwd + (T : Type) (l : list_t T) (i : U32) : Result T := + match h: l with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret x + else do + let i0 ← i - (U32.ofInt 1 (by intlit)) + list_nth_mut_fwd T tl i0 + | list_t.Nil => Result.fail Error.panic + +/- [paper::list_nth_mut] -/ +divergent def list_nth_mut_back + (T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := + match h: l with + | list_t.Cons x tl => + if i = (U32.ofInt 0 (by intlit)) + then Result.ret (list_t.Cons ret0 tl) + else + do + let i0 ← i - (U32.ofInt 1 (by intlit)) + let tl0 ← list_nth_mut_back T tl i0 ret0 + Result.ret (list_t.Cons x tl0) + | list_t.Nil => Result.fail Error.panic + +/- [paper::sum] -/ +divergent def sum_fwd (l : list_t I32) : Result I32 := + match h: l with + | list_t.Cons x tl => do + let i ← sum_fwd tl + x + i + | list_t.Nil => Result.ret (I32.ofInt 0 (by intlit)) + +/- [paper::test_nth] -/ +def test_nth_fwd : Result Unit := + do + let l := list_t.Nil + let l0 := list_t.Cons (I32.ofInt 3 (by intlit)) l + let l1 := list_t.Cons (I32.ofInt 2 (by intlit)) l0 + let x ← + list_nth_mut_fwd I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1) + (U32.ofInt 2 (by intlit)) + let x0 ← x + (I32.ofInt 1 (by intlit)) + let l2 ← + list_nth_mut_back I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1) + (U32.ofInt 2 (by intlit)) x0 + let i ← sum_fwd l2 + if not (i = (I32.ofInt 7 (by intlit))) + then Result.fail Error.panic + else Result.ret () + +/- Unit test for [paper::test_nth] -/ +#assert (test_nth_fwd == .ret ()) + +/- [paper::call_choose] -/ +def call_choose_fwd (p : (U32 × U32)) : Result U32 := + do + let (px, py) := p + let pz ← choose_fwd U32 true px py + let pz0 ← pz + (U32.ofInt 1 (by intlit)) + let (px0, _) ← choose_back U32 true px py pz0 + Result.ret px0 + diff --git a/tests/lean/PoloniusList.lean b/tests/lean/PoloniusList.lean new file mode 100644 index 00000000..671f54ea --- /dev/null +++ b/tests/lean/PoloniusList.lean @@ -0,0 +1,33 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [polonius_list] +import Base +open Primitives + +/- [polonius_list::List] -/ +inductive list_t (T : Type) := +| Cons : T -> list_t T -> list_t T +| Nil : list_t T + +/- [polonius_list::get_list_at_x] -/ +divergent def get_list_at_x_fwd + (ls : list_t U32) (x : U32) : Result (list_t U32) := + match h: ls with + | list_t.Cons hd tl => + if hd = x + then Result.ret (list_t.Cons hd tl) + else get_list_at_x_fwd tl x + | list_t.Nil => Result.ret list_t.Nil + +/- [polonius_list::get_list_at_x] -/ +divergent def get_list_at_x_back + (ls : list_t U32) (x : U32) (ret0 : list_t U32) : Result (list_t U32) := + match h: ls with + | list_t.Cons hd tl => + if hd = x + then Result.ret ret0 + else + do + let tl0 ← get_list_at_x_back tl x ret0 + Result.ret (list_t.Cons hd tl0) + | list_t.Nil => Result.ret ret0 + diff --git a/tests/lean/Tests.lean b/tests/lean/Tests.lean new file mode 100644 index 00000000..9b12270e --- /dev/null +++ b/tests/lean/Tests.lean @@ -0,0 +1,9 @@ +import BetreeMain +import Constants +import External +import Hashmap +import HashmapMain +import Loops +import NoNestedBorrows +import Paper +import PoloniusList diff --git a/tests/lean/hashmap/Base/Primitives.lean b/tests/lean/hashmap/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/hashmap/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/hashmap/Hashmap.lean b/tests/lean/hashmap/Hashmap.lean deleted file mode 100644 index 41630205..00000000 --- a/tests/lean/hashmap/Hashmap.lean +++ /dev/null @@ -1 +0,0 @@ -import Hashmap.Funs diff --git a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean b/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean deleted file mode 100644 index 197b0a6a..00000000 --- a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean +++ /dev/null @@ -1,107 +0,0 @@ --- [hashmap]: templates for the decreases clauses -import Base.Primitives -import Hashmap.Types - -/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/ -@[simp] -def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T)) - (n : Usize) := - (slots, n) - -/- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ -syntax "hash_map_allocate_slots_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_allocate_slots_loop_decreases $slots $n) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::clear]: termination measure -/ -@[simp] -def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T)) - (i : Usize) := - (slots, i) - -/- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/ -syntax "hash_map_clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/ -@[simp] -def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) - (value : T) (ls : list_t T) := - (key, value, ls) - -/- [hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ -syntax "hash_map_insert_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_insert_in_list_loop_decreases $key $value $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/ -@[simp] -def hash_map_move_elements_from_list_loop_terminates (T : Type) - (ntable : hash_map_t T) (ls : list_t T) := - (ntable, ls) - -/- [hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ -syntax "hash_map_move_elements_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_move_elements_from_list_loop_decreases $ntable $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::move_elements]: termination measure -/ -@[simp] -def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T) - (slots : Vec (list_t T)) (i : Usize) := - (ntable, slots, i) - -/- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ -syntax "hash_map_move_elements_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_move_elements_loop_decreases $ntable $slots $i) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ -@[simp] -def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ -syntax "hash_map_contains_key_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_contains_key_in_list_loop_decreases $key $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::get_in_list]: termination measure -/ -@[simp] -def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ -syntax "hash_map_get_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ -@[simp] -def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T) - (key : Usize) := - (ls, key) - -/- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ -syntax "hash_map_get_mut_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_get_mut_in_list_loop_decreases $ls $key) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/ -@[simp] -def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ -syntax "hash_map_remove_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_remove_from_list_loop_decreases $key $ls) =>`(tactic| sorry) - diff --git a/tests/lean/hashmap/Hashmap/Clauses/Template.lean b/tests/lean/hashmap/Hashmap/Clauses/Template.lean deleted file mode 100644 index 560592c8..00000000 --- a/tests/lean/hashmap/Hashmap/Clauses/Template.lean +++ /dev/null @@ -1,108 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap]: templates for the decreases clauses -import Base.Primitives -import Hashmap.Types - -/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/ -@[simp] -def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T)) - (n : Usize) := - (slots, n) - -/- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ -syntax "hash_map_allocate_slots_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_allocate_slots_loop_decreases $slots $n) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::clear]: termination measure -/ -@[simp] -def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T)) - (i : Usize) := - (slots, i) - -/- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/ -syntax "hash_map_clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/ -@[simp] -def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) - (value : T) (ls : list_t T) := - (key, value, ls) - -/- [hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ -syntax "hash_map_insert_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_insert_in_list_loop_decreases $key $value $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/ -@[simp] -def hash_map_move_elements_from_list_loop_terminates (T : Type) - (ntable : hash_map_t T) (ls : list_t T) := - (ntable, ls) - -/- [hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ -syntax "hash_map_move_elements_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_move_elements_from_list_loop_decreases $ntable $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::move_elements]: termination measure -/ -@[simp] -def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T) - (slots : Vec (list_t T)) (i : Usize) := - (ntable, slots, i) - -/- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ -syntax "hash_map_move_elements_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_move_elements_loop_decreases $ntable $slots $i) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ -@[simp] -def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ -syntax "hash_map_contains_key_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_contains_key_in_list_loop_decreases $key $ls) => - `(tactic| sorry) - -/- [hashmap::HashMap::{0}::get_in_list]: termination measure -/ -@[simp] -def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ -syntax "hash_map_get_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ -@[simp] -def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T) - (key : Usize) := - (ls, key) - -/- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ -syntax "hash_map_get_mut_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_get_mut_in_list_loop_decreases $ls $key) =>`(tactic| sorry) - -/- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/ -@[simp] -def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) - (ls : list_t T) := - (key, ls) - -/- [hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ -syntax "hash_map_remove_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hash_map_remove_from_list_loop_decreases $key $ls) =>`(tactic| sorry) - diff --git a/tests/lean/hashmap/Hashmap/Funs.lean b/tests/lean/hashmap/Hashmap/Funs.lean deleted file mode 100644 index 77b1a157..00000000 --- a/tests/lean/hashmap/Hashmap/Funs.lean +++ /dev/null @@ -1,513 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap]: function definitions -import Base.Primitives -import Hashmap.Types -import Hashmap.Clauses.Clauses - -/- [hashmap::hash_key] -/ -def hash_key_fwd (k : Usize) : Result Usize := - Result.ret k - -/- [hashmap::HashMap::{0}::allocate_slots] -/ -def hash_map_allocate_slots_loop_fwd - (T : Type) (slots : Vec (list_t T)) (n : Usize) : - (Result (Vec (list_t T))) - := - if h: n > (Usize.ofInt 0 (by intlit)) - then - do - let slots0 ← vec_push_back (list_t T) slots list_t.Nil - let n0 ← n - (Usize.ofInt 1 (by intlit)) - hash_map_allocate_slots_loop_fwd T slots0 n0 - else Result.ret slots -termination_by hash_map_allocate_slots_loop_fwd slots n => - hash_map_allocate_slots_loop_terminates T slots n -decreasing_by hash_map_allocate_slots_loop_decreases slots n - -/- [hashmap::HashMap::{0}::allocate_slots] -/ -def hash_map_allocate_slots_fwd - (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) := - hash_map_allocate_slots_loop_fwd T slots n - -/- [hashmap::HashMap::{0}::new_with_capacity] -/ -def hash_map_new_with_capacity_fwd - (T : Type) (capacity : Usize) (max_load_dividend : Usize) - (max_load_divisor : Usize) : - Result (hash_map_t T) - := - do - let v := vec_new (list_t T) - let slots ← hash_map_allocate_slots_fwd T v capacity - let i ← capacity * max_load_dividend - let i0 ← i / max_load_divisor - Result.ret - { - hash_map_num_entries := (Usize.ofInt 0 (by intlit)), - hash_map_max_load_factor := (max_load_dividend, max_load_divisor), - hash_map_max_load := i0, - hash_map_slots := slots - } - -/- [hashmap::HashMap::{0}::new] -/ -def hash_map_new_fwd (T : Type) : Result (hash_map_t T) := - hash_map_new_with_capacity_fwd T (Usize.ofInt 32 (by intlit)) - (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) - -/- [hashmap::HashMap::{0}::clear] -/ -def hash_map_clear_loop_fwd_back - (T : Type) (slots : Vec (list_t T)) (i : Usize) : - (Result (Vec (list_t T))) - := - let i0 := vec_len (list_t T) slots - if h: i < i0 - then - do - let i1 ← i + (Usize.ofInt 1 (by intlit)) - let slots0 ← vec_index_mut_back (list_t T) slots i list_t.Nil - hash_map_clear_loop_fwd_back T slots0 i1 - else Result.ret slots -termination_by hash_map_clear_loop_fwd_back slots i => - hash_map_clear_loop_terminates T slots i -decreasing_by hash_map_clear_loop_decreases slots i - -/- [hashmap::HashMap::{0}::clear] -/ -def hash_map_clear_fwd_back - (T : Type) (self : hash_map_t T) : Result (hash_map_t T) := - do - let v ← - hash_map_clear_loop_fwd_back T self.hash_map_slots - (Usize.ofInt 0 (by intlit)) - Result.ret - { - self - with - hash_map_num_entries := (Usize.ofInt 0 (by intlit)), - hash_map_slots := v - } - -/- [hashmap::HashMap::{0}::len] -/ -def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result Usize := - Result.ret self.hash_map_num_entries - -/- [hashmap::HashMap::{0}::insert_in_list] -/ -def hash_map_insert_in_list_loop_fwd - (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result Bool) := - match h: ls with - | list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret false - else hash_map_insert_in_list_loop_fwd T key value tl - | list_t.Nil => Result.ret true -termination_by hash_map_insert_in_list_loop_fwd key value ls => - hash_map_insert_in_list_loop_terminates T key value ls -decreasing_by hash_map_insert_in_list_loop_decreases key value ls - -/- [hashmap::HashMap::{0}::insert_in_list] -/ -def hash_map_insert_in_list_fwd - (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool := - hash_map_insert_in_list_loop_fwd T key value ls - -/- [hashmap::HashMap::{0}::insert_in_list] -/ -def hash_map_insert_in_list_loop_back - (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result (list_t T)) := - match h: ls with - | list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret (list_t.Cons ckey value tl) - else - do - let tl0 ← hash_map_insert_in_list_loop_back T key value tl - Result.ret (list_t.Cons ckey cvalue tl0) - | list_t.Nil => let l := list_t.Nil - Result.ret (list_t.Cons key value l) -termination_by hash_map_insert_in_list_loop_back key value ls => - hash_map_insert_in_list_loop_terminates T key value ls -decreasing_by hash_map_insert_in_list_loop_decreases key value ls - -/- [hashmap::HashMap::{0}::insert_in_list] -/ -def hash_map_insert_in_list_back - (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) := - hash_map_insert_in_list_loop_back T key value ls - -/- [hashmap::HashMap::{0}::insert_no_resize] -/ -def hash_map_insert_no_resize_fwd_back - (T : Type) (self : hash_map_t T) (key : Usize) (value : T) : - Result (hash_map_t T) - := - do - let hash ← hash_key_fwd key - let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← hash % i - let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod - let inserted ← hash_map_insert_in_list_fwd T key value l - if h: inserted - then - do - let i0 ← self.hash_map_num_entries + (Usize.ofInt 1 (by intlit)) - let l0 ← hash_map_insert_in_list_back T key value l - let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 - Result.ret - { self with hash_map_num_entries := i0, hash_map_slots := v } - else - do - let l0 ← hash_map_insert_in_list_back T key value l - let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 - Result.ret { self with hash_map_slots := v } - -/- [core::num::u32::{9}::MAX] -/ -def core_num_u32_max_body : Result U32 := - Result.ret (U32.ofInt 4294967295 (by intlit)) -def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) - -/- [hashmap::HashMap::{0}::move_elements_from_list] -/ -def hash_map_move_elements_from_list_loop_fwd_back - (T : Type) (ntable : hash_map_t T) (ls : list_t T) : - (Result (hash_map_t T)) - := - match h: ls with - | list_t.Cons k v tl => - do - let ntable0 ← hash_map_insert_no_resize_fwd_back T ntable k v - hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl - | list_t.Nil => Result.ret ntable -termination_by hash_map_move_elements_from_list_loop_fwd_back ntable ls => - hash_map_move_elements_from_list_loop_terminates T ntable ls -decreasing_by hash_map_move_elements_from_list_loop_decreases ntable ls - -/- [hashmap::HashMap::{0}::move_elements_from_list] -/ -def hash_map_move_elements_from_list_fwd_back - (T : Type) (ntable : hash_map_t T) (ls : list_t T) : Result (hash_map_t T) := - hash_map_move_elements_from_list_loop_fwd_back T ntable ls - -/- [hashmap::HashMap::{0}::move_elements] -/ -def hash_map_move_elements_loop_fwd_back - (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : - (Result ((hash_map_t T) × (Vec (list_t T)))) - := - let i0 := vec_len (list_t T) slots - if h: i < i0 - then - do - let l ← vec_index_mut_fwd (list_t T) slots i - let ls := mem_replace_fwd (list_t T) l list_t.Nil - let ntable0 ← hash_map_move_elements_from_list_fwd_back T ntable ls - let i1 ← i + (Usize.ofInt 1 (by intlit)) - let l0 := mem_replace_back (list_t T) l list_t.Nil - let slots0 ← vec_index_mut_back (list_t T) slots i l0 - hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1 - else Result.ret (ntable, slots) -termination_by hash_map_move_elements_loop_fwd_back ntable slots i => - hash_map_move_elements_loop_terminates T ntable slots i -decreasing_by hash_map_move_elements_loop_decreases ntable slots i - -/- [hashmap::HashMap::{0}::move_elements] -/ -def hash_map_move_elements_fwd_back - (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) : - Result ((hash_map_t T) × (Vec (list_t T))) - := - hash_map_move_elements_loop_fwd_back T ntable slots i - -/- [hashmap::HashMap::{0}::try_resize] -/ -def hash_map_try_resize_fwd_back - (T : Type) (self : hash_map_t T) : Result (hash_map_t T) := - do - let max_usize ← Scalar.cast .Usize core_num_u32_max_c - let capacity := vec_len (list_t T) self.hash_map_slots - let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) - let (i, i0) := self.hash_map_max_load_factor - let i1 ← n1 / i - if h: capacity <= i1 - then - do - let i2 ← capacity * (Usize.ofInt 2 (by intlit)) - let ntable ← hash_map_new_with_capacity_fwd T i2 i i0 - let (ntable0, _) ← - hash_map_move_elements_fwd_back T ntable self.hash_map_slots - (Usize.ofInt 0 (by intlit)) - Result.ret - { - ntable0 - with - hash_map_num_entries := self.hash_map_num_entries, - hash_map_max_load_factor := (i, i0) - } - else Result.ret { self with hash_map_max_load_factor := (i, i0) } - -/- [hashmap::HashMap::{0}::insert] -/ -def hash_map_insert_fwd_back - (T : Type) (self : hash_map_t T) (key : Usize) (value : T) : - Result (hash_map_t T) - := - do - let self0 ← hash_map_insert_no_resize_fwd_back T self key value - let i ← hash_map_len_fwd T self0 - if h: i > self0.hash_map_max_load - then hash_map_try_resize_fwd_back T self0 - else Result.ret self0 - -/- [hashmap::HashMap::{0}::contains_key_in_list] -/ -def hash_map_contains_key_in_list_loop_fwd - (T : Type) (key : Usize) (ls : list_t T) : (Result Bool) := - match h: ls with - | list_t.Cons ckey t tl => - if h: ckey = key - then Result.ret true - else hash_map_contains_key_in_list_loop_fwd T key tl - | list_t.Nil => Result.ret false -termination_by hash_map_contains_key_in_list_loop_fwd key ls => - hash_map_contains_key_in_list_loop_terminates T key ls -decreasing_by hash_map_contains_key_in_list_loop_decreases key ls - -/- [hashmap::HashMap::{0}::contains_key_in_list] -/ -def hash_map_contains_key_in_list_fwd - (T : Type) (key : Usize) (ls : list_t T) : Result Bool := - hash_map_contains_key_in_list_loop_fwd T key ls - -/- [hashmap::HashMap::{0}::contains_key] -/ -def hash_map_contains_key_fwd - (T : Type) (self : hash_map_t T) (key : Usize) : Result Bool := - do - let hash ← hash_key_fwd key - let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← hash % i - let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod - hash_map_contains_key_in_list_fwd T key l - -/- [hashmap::HashMap::{0}::get_in_list] -/ -def hash_map_get_in_list_loop_fwd - (T : Type) (key : Usize) (ls : list_t T) : (Result T) := - match h: ls with - | list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret cvalue - else hash_map_get_in_list_loop_fwd T key tl - | list_t.Nil => Result.fail Error.panic -termination_by hash_map_get_in_list_loop_fwd key ls => - hash_map_get_in_list_loop_terminates T key ls -decreasing_by hash_map_get_in_list_loop_decreases key ls - -/- [hashmap::HashMap::{0}::get_in_list] -/ -def hash_map_get_in_list_fwd - (T : Type) (key : Usize) (ls : list_t T) : Result T := - hash_map_get_in_list_loop_fwd T key ls - -/- [hashmap::HashMap::{0}::get] -/ -def hash_map_get_fwd - (T : Type) (self : hash_map_t T) (key : Usize) : Result T := - do - let hash ← hash_key_fwd key - let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← hash % i - let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod - hash_map_get_in_list_fwd T key l - -/- [hashmap::HashMap::{0}::get_mut_in_list] -/ -def hash_map_get_mut_in_list_loop_fwd - (T : Type) (ls : list_t T) (key : Usize) : (Result T) := - match h: ls with - | list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret cvalue - else hash_map_get_mut_in_list_loop_fwd T tl key - | list_t.Nil => Result.fail Error.panic -termination_by hash_map_get_mut_in_list_loop_fwd ls key => - hash_map_get_mut_in_list_loop_terminates T ls key -decreasing_by hash_map_get_mut_in_list_loop_decreases ls key - -/- [hashmap::HashMap::{0}::get_mut_in_list] -/ -def hash_map_get_mut_in_list_fwd - (T : Type) (ls : list_t T) (key : Usize) : Result T := - hash_map_get_mut_in_list_loop_fwd T ls key - -/- [hashmap::HashMap::{0}::get_mut_in_list] -/ -def hash_map_get_mut_in_list_loop_back - (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : (Result (list_t T)) := - match h: ls with - | list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret (list_t.Cons ckey ret0 tl) - else - do - let tl0 ← hash_map_get_mut_in_list_loop_back T tl key ret0 - Result.ret (list_t.Cons ckey cvalue tl0) - | list_t.Nil => Result.fail Error.panic -termination_by hash_map_get_mut_in_list_loop_back ls key ret0 => - hash_map_get_mut_in_list_loop_terminates T ls key -decreasing_by hash_map_get_mut_in_list_loop_decreases ls key - -/- [hashmap::HashMap::{0}::get_mut_in_list] -/ -def hash_map_get_mut_in_list_back - (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) := - hash_map_get_mut_in_list_loop_back T ls key ret0 - -/- [hashmap::HashMap::{0}::get_mut] -/ -def hash_map_get_mut_fwd - (T : Type) (self : hash_map_t T) (key : Usize) : Result T := - do - let hash ← hash_key_fwd key - let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← hash % i - let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod - hash_map_get_mut_in_list_fwd T l key - -/- [hashmap::HashMap::{0}::get_mut] -/ -def hash_map_get_mut_back - (T : Type) (self : hash_map_t T) (key : Usize) (ret0 : T) : - Result (hash_map_t T) - := - do - let hash ← hash_key_fwd key - let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← hash % i - let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod - let l0 ← hash_map_get_mut_in_list_back T l key ret0 - let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 - Result.ret { self with hash_map_slots := v } - -/- [hashmap::HashMap::{0}::remove_from_list] -/ -def hash_map_remove_from_list_loop_fwd - (T : Type) (key : Usize) (ls : list_t T) : (Result (Option T)) := - match h: ls with - | list_t.Cons ckey t tl => - if h: ckey = key - then - let mv_ls := - mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil - match h: mv_ls with - | list_t.Cons i cvalue tl0 => Result.ret (Option.some cvalue) - | list_t.Nil => Result.fail Error.panic - else hash_map_remove_from_list_loop_fwd T key tl - | list_t.Nil => Result.ret Option.none -termination_by hash_map_remove_from_list_loop_fwd key ls => - hash_map_remove_from_list_loop_terminates T key ls -decreasing_by hash_map_remove_from_list_loop_decreases key ls - -/- [hashmap::HashMap::{0}::remove_from_list] -/ -def hash_map_remove_from_list_fwd - (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) := - hash_map_remove_from_list_loop_fwd T key ls - -/- [hashmap::HashMap::{0}::remove_from_list] -/ -def hash_map_remove_from_list_loop_back - (T : Type) (key : Usize) (ls : list_t T) : (Result (list_t T)) := - match h: ls with - | list_t.Cons ckey t tl => - if h: ckey = key - then - let mv_ls := - mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil - match h: mv_ls with - | list_t.Cons i cvalue tl0 => Result.ret tl0 - | list_t.Nil => Result.fail Error.panic - else - do - let tl0 ← hash_map_remove_from_list_loop_back T key tl - Result.ret (list_t.Cons ckey t tl0) - | list_t.Nil => Result.ret list_t.Nil -termination_by hash_map_remove_from_list_loop_back key ls => - hash_map_remove_from_list_loop_terminates T key ls -decreasing_by hash_map_remove_from_list_loop_decreases key ls - -/- [hashmap::HashMap::{0}::remove_from_list] -/ -def hash_map_remove_from_list_back - (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) := - hash_map_remove_from_list_loop_back T key ls - -/- [hashmap::HashMap::{0}::remove] -/ -def hash_map_remove_fwd - (T : Type) (self : hash_map_t T) (key : Usize) : Result (Option T) := - do - let hash ← hash_key_fwd key - let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← hash % i - let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod - let x ← hash_map_remove_from_list_fwd T key l - match h: x with - | Option.none => Result.ret Option.none - | Option.some x0 => - do - let _ ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit)) - Result.ret (Option.some x0) - -/- [hashmap::HashMap::{0}::remove] -/ -def hash_map_remove_back - (T : Type) (self : hash_map_t T) (key : Usize) : Result (hash_map_t T) := - do - let hash ← hash_key_fwd key - let i := vec_len (list_t T) self.hash_map_slots - let hash_mod ← hash % i - let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod - let x ← hash_map_remove_from_list_fwd T key l - match h: x with - | Option.none => - do - let l0 ← hash_map_remove_from_list_back T key l - let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 - Result.ret { self with hash_map_slots := v } - | Option.some x0 => - do - let i0 ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit)) - let l0 ← hash_map_remove_from_list_back T key l - let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0 - Result.ret - { self with hash_map_num_entries := i0, hash_map_slots := v } - -/- [hashmap::test1] -/ -def test1_fwd : Result Unit := - do - let hm ← hash_map_new_fwd U64 - let hm0 ← - hash_map_insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit)) - (U64.ofInt 42 (by intlit)) - let hm1 ← - hash_map_insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit)) - (U64.ofInt 18 (by intlit)) - let hm2 ← - hash_map_insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit)) - (U64.ofInt 138 (by intlit)) - let hm3 ← - hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) - (U64.ofInt 256 (by intlit)) - let i ← hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) - if h: not (i = (U64.ofInt 18 (by intlit))) - then Result.fail Error.panic - else - do - let hm4 ← - hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit)) - (U64.ofInt 56 (by intlit)) - let i0 ← hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) - if h: not (i0 = (U64.ofInt 56 (by intlit))) - then Result.fail Error.panic - else - do - let x ← - hash_map_remove_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) - match h: x with - | Option.none => Result.fail Error.panic - | Option.some x0 => - if h: not (x0 = (U64.ofInt 56 (by intlit))) - then Result.fail Error.panic - else - do - let hm5 ← - hash_map_remove_back U64 hm4 (Usize.ofInt 1024 (by intlit)) - let i1 ← - hash_map_get_fwd U64 hm5 (Usize.ofInt 0 (by intlit)) - if h: not (i1 = (U64.ofInt 42 (by intlit))) - then Result.fail Error.panic - else - do - let i2 ← - hash_map_get_fwd U64 hm5 (Usize.ofInt 128 (by intlit)) - if h: not (i2 = (U64.ofInt 18 (by intlit))) - then Result.fail Error.panic - else - do - let i3 ← - hash_map_get_fwd U64 hm5 - (Usize.ofInt 1056 (by intlit)) - if h: not (i3 = (U64.ofInt 256 (by intlit))) - then Result.fail Error.panic - else Result.ret () - diff --git a/tests/lean/hashmap/Hashmap/Types.lean b/tests/lean/hashmap/Hashmap/Types.lean deleted file mode 100644 index 6eabf7da..00000000 --- a/tests/lean/hashmap/Hashmap/Types.lean +++ /dev/null @@ -1,16 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap]: type definitions -import Base.Primitives - -/- [hashmap::List] -/ -inductive list_t (T : Type) := -| Cons : Usize -> T -> list_t T -> list_t T -| Nil : list_t T - -/- [hashmap::HashMap] -/ -structure hash_map_t (T : Type) where - hash_map_num_entries : Usize - hash_map_max_load_factor : (Usize × Usize) - hash_map_max_load : Usize - hash_map_slots : Vec (list_t T) - diff --git a/tests/lean/hashmap/lake-manifest.json b/tests/lean/hashmap/lake-manifest.json deleted file mode 100644 index 88e446e5..00000000 --- a/tests/lean/hashmap/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "1c5ed7840906e29e1f8ca7dbf088cf155e5397e9", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/hashmap/lakefile.lean b/tests/lean/hashmap/lakefile.lean deleted file mode 100644 index 713785f6..00000000 --- a/tests/lean/hashmap/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «hashmap» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «Hashmap» {} diff --git a/tests/lean/hashmap/lean-toolchain b/tests/lean/hashmap/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/hashmap/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/hashmap_on_disk/.gitignore b/tests/lean/hashmap_on_disk/.gitignore deleted file mode 100644 index a1735e7c..00000000 --- a/tests/lean/hashmap_on_disk/.gitignore +++ /dev/null @@ -1,5 +0,0 @@ -/build -/lean_packages/* -!/lean_packages/manifest.json -/build -/lake-packages/* diff --git a/tests/lean/hashmap_on_disk/Base/Primitives.lean b/tests/lean/hashmap_on_disk/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/hashmap_on_disk/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/hashmap_on_disk/HashmapMain.lean b/tests/lean/hashmap_on_disk/HashmapMain.lean deleted file mode 100644 index 1a4e7f82..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain.lean +++ /dev/null @@ -1 +0,0 @@ -import HashmapMain.Funs diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean deleted file mode 100644 index a4dc996a..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean +++ /dev/null @@ -1,110 +0,0 @@ -import Base.Primitives -import HashmapMain.Types - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/ -@[simp] -def hashmap_hash_map_allocate_slots_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (n : Usize) := - (slots, n) - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ -syntax "hashmap_hash_map_allocate_slots_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_allocate_slots_loop_decreases $slots $n) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/ -@[simp] -def hashmap_hash_map_clear_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (i : Usize) := - (slots, i) - -/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/ -syntax "hashmap_hash_map_clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) - (value : T) (ls : hashmap_list_t T) := - (key, value, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_insert_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_insert_in_list_loop_decreases $key $value $ls) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/ -@[simp] -def hashmap_hash_map_move_elements_from_list_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) := - (ntable, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_move_elements_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_move_elements_from_list_loop_decreases $ntable -$ls) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/ -@[simp] -def hashmap_hash_map_move_elements_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize) - := - (ntable, slots, i) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ -syntax "hashmap_hash_map_move_elements_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_move_elements_loop_decreases $ntable $slots $i) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type) - (key : Usize) (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_contains_key_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_contains_key_in_list_loop_decreases $key $ls) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) - (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_get_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type) - (ls : hashmap_list_t T) (key : Usize) := - (ls, key) - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_get_mut_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_get_mut_in_list_loop_decreases $ls $key) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/ -@[simp] -def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) - (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_remove_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_remove_from_list_loop_decreases $key $ls) => - `(tactic| sorry) - diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean deleted file mode 100644 index 33802597..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean +++ /dev/null @@ -1,112 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap_main]: templates for the decreases clauses -import Base.Primitives -import HashmapMain.Types - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/ -@[simp] -def hashmap_hash_map_allocate_slots_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (n : Usize) := - (slots, n) - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/ -syntax "hashmap_hash_map_allocate_slots_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_allocate_slots_loop_decreases $slots $n) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/ -@[simp] -def hashmap_hash_map_clear_loop_terminates (T : Type) - (slots : Vec (hashmap_list_t T)) (i : Usize) := - (slots, i) - -/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/ -syntax "hashmap_hash_map_clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize) - (value : T) (ls : hashmap_list_t T) := - (key, value, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_insert_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_insert_in_list_loop_decreases $key $value $ls) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/ -@[simp] -def hashmap_hash_map_move_elements_from_list_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) := - (ntable, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_move_elements_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_move_elements_from_list_loop_decreases $ntable -$ls) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/ -@[simp] -def hashmap_hash_map_move_elements_loop_terminates (T : Type) - (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize) - := - (ntable, slots, i) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/ -syntax "hashmap_hash_map_move_elements_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_move_elements_loop_decreases $ntable $slots $i) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type) - (key : Usize) (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_contains_key_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_contains_key_in_list_loop_decreases $key $ls) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize) - (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_get_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/ -@[simp] -def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type) - (ls : hashmap_list_t T) (key : Usize) := - (ls, key) - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_get_mut_in_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_get_mut_in_list_loop_decreases $ls $key) => - `(tactic| sorry) - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/ -@[simp] -def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize) - (ls : hashmap_list_t T) := - (key, ls) - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/ -syntax "hashmap_hash_map_remove_from_list_loop_decreases" term+ : tactic -macro_rules -| `(tactic| hashmap_hash_map_remove_from_list_loop_decreases $key $ls) => - `(tactic| sorry) - diff --git a/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean b/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean deleted file mode 100644 index a5103acc..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean +++ /dev/null @@ -1,5 +0,0 @@ -import Base.Primitives -import HashmapMain.Types -import HashmapMain.Opaque - -def opaque_defs : OpaqueDefs := by sorry diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean b/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean deleted file mode 100644 index 342c3833..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean +++ /dev/null @@ -1,590 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap_main]: function definitions -import Base.Primitives -import HashmapMain.Types -import HashmapMain.ExternalFuns -import HashmapMain.Clauses.Clauses - -/- [hashmap_main::hashmap::hash_key] -/ -def hashmap_hash_key_fwd (k : Usize) : Result Usize := - Result.ret k - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/ -def hashmap_hash_map_allocate_slots_loop_fwd - (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) : - (Result (Vec (hashmap_list_t T))) - := - if h: n > (Usize.ofInt 0 (by intlit)) - then - do - let slots0 ← vec_push_back (hashmap_list_t T) slots hashmap_list_t.Nil - let n0 ← n - (Usize.ofInt 1 (by intlit)) - hashmap_hash_map_allocate_slots_loop_fwd T slots0 n0 - else Result.ret slots -termination_by hashmap_hash_map_allocate_slots_loop_fwd slots n => - hashmap_hash_map_allocate_slots_loop_terminates T slots n -decreasing_by hashmap_hash_map_allocate_slots_loop_decreases slots n - -/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/ -def hashmap_hash_map_allocate_slots_fwd - (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) : - Result (Vec (hashmap_list_t T)) - := - hashmap_hash_map_allocate_slots_loop_fwd T slots n - -/- [hashmap_main::hashmap::HashMap::{0}::new_with_capacity] -/ -def hashmap_hash_map_new_with_capacity_fwd - (T : Type) (capacity : Usize) (max_load_dividend : Usize) - (max_load_divisor : Usize) : - Result (hashmap_hash_map_t T) - := - do - let v := vec_new (hashmap_list_t T) - let slots ← hashmap_hash_map_allocate_slots_fwd T v capacity - let i ← capacity * max_load_dividend - let i0 ← i / max_load_divisor - Result.ret - { - hashmap_hash_map_num_entries := (Usize.ofInt 0 (by intlit)), - hashmap_hash_map_max_load_factor := - (max_load_dividend, max_load_divisor), - hashmap_hash_map_max_load := i0, - hashmap_hash_map_slots := slots - } - -/- [hashmap_main::hashmap::HashMap::{0}::new] -/ -def hashmap_hash_map_new_fwd (T : Type) : Result (hashmap_hash_map_t T) := - hashmap_hash_map_new_with_capacity_fwd T (Usize.ofInt 32 (by intlit)) - (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit)) - -/- [hashmap_main::hashmap::HashMap::{0}::clear] -/ -def hashmap_hash_map_clear_loop_fwd_back - (T : Type) (slots : Vec (hashmap_list_t T)) (i : Usize) : - (Result (Vec (hashmap_list_t T))) - := - let i0 := vec_len (hashmap_list_t T) slots - if h: i < i0 - then - do - let i1 ← i + (Usize.ofInt 1 (by intlit)) - let slots0 ← - vec_index_mut_back (hashmap_list_t T) slots i hashmap_list_t.Nil - hashmap_hash_map_clear_loop_fwd_back T slots0 i1 - else Result.ret slots -termination_by hashmap_hash_map_clear_loop_fwd_back slots i => - hashmap_hash_map_clear_loop_terminates T slots i -decreasing_by hashmap_hash_map_clear_loop_decreases slots i - -/- [hashmap_main::hashmap::HashMap::{0}::clear] -/ -def hashmap_hash_map_clear_fwd_back - (T : Type) (self : hashmap_hash_map_t T) : Result (hashmap_hash_map_t T) := - do - let v ← - hashmap_hash_map_clear_loop_fwd_back T self.hashmap_hash_map_slots - (Usize.ofInt 0 (by intlit)) - Result.ret - { - self - with - hashmap_hash_map_num_entries := (Usize.ofInt 0 (by intlit)), - hashmap_hash_map_slots := v - } - -/- [hashmap_main::hashmap::HashMap::{0}::len] -/ -def hashmap_hash_map_len_fwd - (T : Type) (self : hashmap_hash_map_t T) : Result Usize := - Result.ret self.hashmap_hash_map_num_entries - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ -def hashmap_hash_map_insert_in_list_loop_fwd - (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : - (Result Bool) - := - match h: ls with - | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret false - else hashmap_hash_map_insert_in_list_loop_fwd T key value tl - | hashmap_list_t.Nil => Result.ret true -termination_by hashmap_hash_map_insert_in_list_loop_fwd key value ls => - hashmap_hash_map_insert_in_list_loop_terminates T key value ls -decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ -def hashmap_hash_map_insert_in_list_fwd - (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : Result Bool := - hashmap_hash_map_insert_in_list_loop_fwd T key value ls - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ -def hashmap_hash_map_insert_in_list_loop_back - (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : - (Result (hashmap_list_t T)) - := - match h: ls with - | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret (hashmap_list_t.Cons ckey value tl) - else - do - let tl0 ← hashmap_hash_map_insert_in_list_loop_back T key value tl - Result.ret (hashmap_list_t.Cons ckey cvalue tl0) - | hashmap_list_t.Nil => - let l := hashmap_list_t.Nil - Result.ret (hashmap_list_t.Cons key value l) -termination_by hashmap_hash_map_insert_in_list_loop_back key value ls => - hashmap_hash_map_insert_in_list_loop_terminates T key value ls -decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls - -/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/ -def hashmap_hash_map_insert_in_list_back - (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : - Result (hashmap_list_t T) - := - hashmap_hash_map_insert_in_list_loop_back T key value ls - -/- [hashmap_main::hashmap::HashMap::{0}::insert_no_resize] -/ -def hashmap_hash_map_insert_no_resize_fwd_back - (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (value : T) : - Result (hashmap_hash_map_t T) - := - do - let hash ← hashmap_hash_key_fwd key - let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← hash % i - let l ← - vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod - let inserted ← hashmap_hash_map_insert_in_list_fwd T key value l - if h: inserted - then - do - let i0 ← self.hashmap_hash_map_num_entries + - (Usize.ofInt 1 (by intlit)) - let l0 ← hashmap_hash_map_insert_in_list_back T key value l - let v ← - vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots - hash_mod l0 - Result.ret - { - self - with - hashmap_hash_map_num_entries := i0, hashmap_hash_map_slots := v - } - else - do - let l0 ← hashmap_hash_map_insert_in_list_back T key value l - let v ← - vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots - hash_mod l0 - Result.ret { self with hashmap_hash_map_slots := v } - -/- [core::num::u32::{9}::MAX] -/ -def core_num_u32_max_body : Result U32 := - Result.ret (U32.ofInt 4294967295 (by intlit)) -def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/ -def hashmap_hash_map_move_elements_from_list_loop_fwd_back - (T : Type) (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) : - (Result (hashmap_hash_map_t T)) - := - match h: ls with - | hashmap_list_t.Cons k v tl => - do - let ntable0 ← hashmap_hash_map_insert_no_resize_fwd_back T ntable k v - hashmap_hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl - | hashmap_list_t.Nil => Result.ret ntable -termination_by hashmap_hash_map_move_elements_from_list_loop_fwd_back ntable ls - => - hashmap_hash_map_move_elements_from_list_loop_terminates T ntable ls -decreasing_by hashmap_hash_map_move_elements_from_list_loop_decreases ntable ls - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/ -def hashmap_hash_map_move_elements_from_list_fwd_back - (T : Type) (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) : - Result (hashmap_hash_map_t T) - := - hashmap_hash_map_move_elements_from_list_loop_fwd_back T ntable ls - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/ -def hashmap_hash_map_move_elements_loop_fwd_back - (T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) - (i : Usize) : - (Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T)))) - := - let i0 := vec_len (hashmap_list_t T) slots - if h: i < i0 - then - do - let l ← vec_index_mut_fwd (hashmap_list_t T) slots i - let ls := mem_replace_fwd (hashmap_list_t T) l hashmap_list_t.Nil - let ntable0 ← - hashmap_hash_map_move_elements_from_list_fwd_back T ntable ls - let i1 ← i + (Usize.ofInt 1 (by intlit)) - let l0 := mem_replace_back (hashmap_list_t T) l hashmap_list_t.Nil - let slots0 ← vec_index_mut_back (hashmap_list_t T) slots i l0 - hashmap_hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1 - else Result.ret (ntable, slots) -termination_by hashmap_hash_map_move_elements_loop_fwd_back ntable slots i => - hashmap_hash_map_move_elements_loop_terminates T ntable slots i -decreasing_by hashmap_hash_map_move_elements_loop_decreases ntable slots i - -/- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/ -def hashmap_hash_map_move_elements_fwd_back - (T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) - (i : Usize) : - Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T))) - := - hashmap_hash_map_move_elements_loop_fwd_back T ntable slots i - -/- [hashmap_main::hashmap::HashMap::{0}::try_resize] -/ -def hashmap_hash_map_try_resize_fwd_back - (T : Type) (self : hashmap_hash_map_t T) : Result (hashmap_hash_map_t T) := - do - let max_usize ← Scalar.cast .Usize core_num_u32_max_c - let capacity := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let n1 ← max_usize / (Usize.ofInt 2 (by intlit)) - let (i, i0) := self.hashmap_hash_map_max_load_factor - let i1 ← n1 / i - if h: capacity <= i1 - then - do - let i2 ← capacity * (Usize.ofInt 2 (by intlit)) - let ntable ← hashmap_hash_map_new_with_capacity_fwd T i2 i i0 - let (ntable0, _) ← - hashmap_hash_map_move_elements_fwd_back T ntable - self.hashmap_hash_map_slots (Usize.ofInt 0 (by intlit)) - Result.ret - { - ntable0 - with - hashmap_hash_map_num_entries := self.hashmap_hash_map_num_entries, - hashmap_hash_map_max_load_factor := (i, i0) - } - else Result.ret { self with hashmap_hash_map_max_load_factor := (i, i0) } - -/- [hashmap_main::hashmap::HashMap::{0}::insert] -/ -def hashmap_hash_map_insert_fwd_back - (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (value : T) : - Result (hashmap_hash_map_t T) - := - do - let self0 ← hashmap_hash_map_insert_no_resize_fwd_back T self key value - let i ← hashmap_hash_map_len_fwd T self0 - if h: i > self0.hashmap_hash_map_max_load - then hashmap_hash_map_try_resize_fwd_back T self0 - else Result.ret self0 - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/ -def hashmap_hash_map_contains_key_in_list_loop_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result Bool) := - match h: ls with - | hashmap_list_t.Cons ckey t tl => - if h: ckey = key - then Result.ret true - else hashmap_hash_map_contains_key_in_list_loop_fwd T key tl - | hashmap_list_t.Nil => Result.ret false -termination_by hashmap_hash_map_contains_key_in_list_loop_fwd key ls => - hashmap_hash_map_contains_key_in_list_loop_terminates T key ls -decreasing_by hashmap_hash_map_contains_key_in_list_loop_decreases key ls - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/ -def hashmap_hash_map_contains_key_in_list_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result Bool := - hashmap_hash_map_contains_key_in_list_loop_fwd T key ls - -/- [hashmap_main::hashmap::HashMap::{0}::contains_key] -/ -def hashmap_hash_map_contains_key_fwd - (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result Bool := - do - let hash ← hashmap_hash_key_fwd key - let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← hash % i - let l ← - vec_index_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod - hashmap_hash_map_contains_key_in_list_fwd T key l - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/ -def hashmap_hash_map_get_in_list_loop_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result T) := - match h: ls with - | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret cvalue - else hashmap_hash_map_get_in_list_loop_fwd T key tl - | hashmap_list_t.Nil => Result.fail Error.panic -termination_by hashmap_hash_map_get_in_list_loop_fwd key ls => - hashmap_hash_map_get_in_list_loop_terminates T key ls -decreasing_by hashmap_hash_map_get_in_list_loop_decreases key ls - -/- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/ -def hashmap_hash_map_get_in_list_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result T := - hashmap_hash_map_get_in_list_loop_fwd T key ls - -/- [hashmap_main::hashmap::HashMap::{0}::get] -/ -def hashmap_hash_map_get_fwd - (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result T := - do - let hash ← hashmap_hash_key_fwd key - let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← hash % i - let l ← - vec_index_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod - hashmap_hash_map_get_in_list_fwd T key l - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ -def hashmap_hash_map_get_mut_in_list_loop_fwd - (T : Type) (ls : hashmap_list_t T) (key : Usize) : (Result T) := - match h: ls with - | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret cvalue - else hashmap_hash_map_get_mut_in_list_loop_fwd T tl key - | hashmap_list_t.Nil => Result.fail Error.panic -termination_by hashmap_hash_map_get_mut_in_list_loop_fwd ls key => - hashmap_hash_map_get_mut_in_list_loop_terminates T ls key -decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ -def hashmap_hash_map_get_mut_in_list_fwd - (T : Type) (ls : hashmap_list_t T) (key : Usize) : Result T := - hashmap_hash_map_get_mut_in_list_loop_fwd T ls key - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ -def hashmap_hash_map_get_mut_in_list_loop_back - (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) : - (Result (hashmap_list_t T)) - := - match h: ls with - | hashmap_list_t.Cons ckey cvalue tl => - if h: ckey = key - then Result.ret (hashmap_list_t.Cons ckey ret0 tl) - else - do - let tl0 ← hashmap_hash_map_get_mut_in_list_loop_back T tl key ret0 - Result.ret (hashmap_list_t.Cons ckey cvalue tl0) - | hashmap_list_t.Nil => Result.fail Error.panic -termination_by hashmap_hash_map_get_mut_in_list_loop_back ls key ret0 => - hashmap_hash_map_get_mut_in_list_loop_terminates T ls key -decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/ -def hashmap_hash_map_get_mut_in_list_back - (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) : - Result (hashmap_list_t T) - := - hashmap_hash_map_get_mut_in_list_loop_back T ls key ret0 - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut] -/ -def hashmap_hash_map_get_mut_fwd - (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result T := - do - let hash ← hashmap_hash_key_fwd key - let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← hash % i - let l ← - vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod - hashmap_hash_map_get_mut_in_list_fwd T l key - -/- [hashmap_main::hashmap::HashMap::{0}::get_mut] -/ -def hashmap_hash_map_get_mut_back - (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (ret0 : T) : - Result (hashmap_hash_map_t T) - := - do - let hash ← hashmap_hash_key_fwd key - let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← hash % i - let l ← - vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod - let l0 ← hashmap_hash_map_get_mut_in_list_back T l key ret0 - let v ← - vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots - hash_mod l0 - Result.ret { self with hashmap_hash_map_slots := v } - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ -def hashmap_hash_map_remove_from_list_loop_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result (Option T)) := - match h: ls with - | hashmap_list_t.Cons ckey t tl => - if h: ckey = key - then - let mv_ls := - mem_replace_fwd (hashmap_list_t T) (hashmap_list_t.Cons ckey t tl) - hashmap_list_t.Nil - match h: mv_ls with - | hashmap_list_t.Cons i cvalue tl0 => Result.ret (Option.some cvalue) - | hashmap_list_t.Nil => Result.fail Error.panic - else hashmap_hash_map_remove_from_list_loop_fwd T key tl - | hashmap_list_t.Nil => Result.ret Option.none -termination_by hashmap_hash_map_remove_from_list_loop_fwd key ls => - hashmap_hash_map_remove_from_list_loop_terminates T key ls -decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ -def hashmap_hash_map_remove_from_list_fwd - (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result (Option T) := - hashmap_hash_map_remove_from_list_loop_fwd T key ls - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ -def hashmap_hash_map_remove_from_list_loop_back - (T : Type) (key : Usize) (ls : hashmap_list_t T) : - (Result (hashmap_list_t T)) - := - match h: ls with - | hashmap_list_t.Cons ckey t tl => - if h: ckey = key - then - let mv_ls := - mem_replace_fwd (hashmap_list_t T) (hashmap_list_t.Cons ckey t tl) - hashmap_list_t.Nil - match h: mv_ls with - | hashmap_list_t.Cons i cvalue tl0 => Result.ret tl0 - | hashmap_list_t.Nil => Result.fail Error.panic - else - do - let tl0 ← hashmap_hash_map_remove_from_list_loop_back T key tl - Result.ret (hashmap_list_t.Cons ckey t tl0) - | hashmap_list_t.Nil => Result.ret hashmap_list_t.Nil -termination_by hashmap_hash_map_remove_from_list_loop_back key ls => - hashmap_hash_map_remove_from_list_loop_terminates T key ls -decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls - -/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/ -def hashmap_hash_map_remove_from_list_back - (T : Type) (key : Usize) (ls : hashmap_list_t T) : - Result (hashmap_list_t T) - := - hashmap_hash_map_remove_from_list_loop_back T key ls - -/- [hashmap_main::hashmap::HashMap::{0}::remove] -/ -def hashmap_hash_map_remove_fwd - (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result (Option T) := - do - let hash ← hashmap_hash_key_fwd key - let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← hash % i - let l ← - vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod - let x ← hashmap_hash_map_remove_from_list_fwd T key l - match h: x with - | Option.none => Result.ret Option.none - | Option.some x0 => - do - let _ ← self.hashmap_hash_map_num_entries - - (Usize.ofInt 1 (by intlit)) - Result.ret (Option.some x0) - -/- [hashmap_main::hashmap::HashMap::{0}::remove] -/ -def hashmap_hash_map_remove_back - (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : - Result (hashmap_hash_map_t T) - := - do - let hash ← hashmap_hash_key_fwd key - let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots - let hash_mod ← hash % i - let l ← - vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod - let x ← hashmap_hash_map_remove_from_list_fwd T key l - match h: x with - | Option.none => - do - let l0 ← hashmap_hash_map_remove_from_list_back T key l - let v ← - vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots - hash_mod l0 - Result.ret { self with hashmap_hash_map_slots := v } - | Option.some x0 => - do - let i0 ← self.hashmap_hash_map_num_entries - - (Usize.ofInt 1 (by intlit)) - let l0 ← hashmap_hash_map_remove_from_list_back T key l - let v ← - vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots - hash_mod l0 - Result.ret - { - self - with - hashmap_hash_map_num_entries := i0, hashmap_hash_map_slots := v - } - -/- [hashmap_main::hashmap::test1] -/ -def hashmap_test1_fwd : Result Unit := - do - let hm ← hashmap_hash_map_new_fwd U64 - let hm0 ← - hashmap_hash_map_insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit)) - (U64.ofInt 42 (by intlit)) - let hm1 ← - hashmap_hash_map_insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit)) - (U64.ofInt 18 (by intlit)) - let hm2 ← - hashmap_hash_map_insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit)) - (U64.ofInt 138 (by intlit)) - let hm3 ← - hashmap_hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit)) - (U64.ofInt 256 (by intlit)) - let i ← hashmap_hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit)) - if h: not (i = (U64.ofInt 18 (by intlit))) - then Result.fail Error.panic - else - do - let hm4 ← - hashmap_hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit)) - (U64.ofInt 56 (by intlit)) - let i0 ← - hashmap_hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit)) - if h: not (i0 = (U64.ofInt 56 (by intlit))) - then Result.fail Error.panic - else - do - let x ← - hashmap_hash_map_remove_fwd U64 hm4 - (Usize.ofInt 1024 (by intlit)) - match h: x with - | Option.none => Result.fail Error.panic - | Option.some x0 => - if h: not (x0 = (U64.ofInt 56 (by intlit))) - then Result.fail Error.panic - else - do - let hm5 ← - hashmap_hash_map_remove_back U64 hm4 - (Usize.ofInt 1024 (by intlit)) - let i1 ← - hashmap_hash_map_get_fwd U64 hm5 - (Usize.ofInt 0 (by intlit)) - if h: not (i1 = (U64.ofInt 42 (by intlit))) - then Result.fail Error.panic - else - do - let i2 ← - hashmap_hash_map_get_fwd U64 hm5 - (Usize.ofInt 128 (by intlit)) - if h: not (i2 = (U64.ofInt 18 (by intlit))) - then Result.fail Error.panic - else - do - let i3 ← - hashmap_hash_map_get_fwd U64 hm5 - (Usize.ofInt 1056 (by intlit)) - if h: not (i3 = (U64.ofInt 256 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- [hashmap_main::insert_on_disk] -/ -def insert_on_disk_fwd - (key : Usize) (value : U64) (st : State) : Result (State × Unit) := - do - let (st0, hm) ← opaque_defs.hashmap_utils_deserialize_fwd st - let hm0 ← hashmap_hash_map_insert_fwd_back U64 hm key value - let (st1, _) ← opaque_defs.hashmap_utils_serialize_fwd hm0 st0 - Result.ret (st1, ()) - -/- [hashmap_main::main] -/ -def main_fwd : Result Unit := - Result.ret () - diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean b/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean deleted file mode 100644 index d98f431a..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean +++ /dev/null @@ -1,15 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap_main]: opaque function definitions -import Base.Primitives -import HashmapMain.Types - -structure OpaqueDefs where - - /- [hashmap_main::hashmap_utils::deserialize] -/ - hashmap_utils_deserialize_fwd - : State -> Result (State × (hashmap_hash_map_t U64)) - - /- [hashmap_main::hashmap_utils::serialize] -/ - hashmap_utils_serialize_fwd - : hashmap_hash_map_t U64 -> State -> Result (State × Unit) - diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean b/tests/lean/hashmap_on_disk/HashmapMain/Types.lean deleted file mode 100644 index 0509fbbd..00000000 --- a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean +++ /dev/null @@ -1,19 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [hashmap_main]: type definitions -import Base.Primitives - -/- [hashmap_main::hashmap::List] -/ -inductive hashmap_list_t (T : Type) := -| Cons : Usize -> T -> hashmap_list_t T -> hashmap_list_t T -| Nil : hashmap_list_t T - -/- [hashmap_main::hashmap::HashMap] -/ -structure hashmap_hash_map_t (T : Type) where - hashmap_hash_map_num_entries : Usize - hashmap_hash_map_max_load_factor : (Usize × Usize) - hashmap_hash_map_max_load : Usize - hashmap_hash_map_slots : Vec (hashmap_list_t T) - -/- The state type used in the state-error monad -/ -axiom State : Type - diff --git a/tests/lean/hashmap_on_disk/lake-manifest.json b/tests/lean/hashmap_on_disk/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/hashmap_on_disk/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/hashmap_on_disk/lakefile.lean b/tests/lean/hashmap_on_disk/lakefile.lean deleted file mode 100644 index 70daf427..00000000 --- a/tests/lean/hashmap_on_disk/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «hashmap_main» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «HashmapMain» {} diff --git a/tests/lean/hashmap_on_disk/lean-toolchain b/tests/lean/hashmap_on_disk/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/hashmap_on_disk/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/lake-manifest.json b/tests/lean/lake-manifest.json new file mode 100644 index 00000000..1397c6f0 --- /dev/null +++ b/tests/lean/lake-manifest.json @@ -0,0 +1,34 @@ +{"version": 4, + "packagesDir": "lake-packages", + "packages": + [{"git": + {"url": "https://github.com/EdAyers/ProofWidgets4", + "subDir?": null, + "rev": "c43db94a8f495dad37829e9d7ad65483d68c86b8", + "name": "proofwidgets", + "inputRev?": "v0.0.11"}}, + {"path": {"name": "Base", "dir": "./../../backends/lean"}}, + {"git": + {"url": "https://github.com/leanprover-community/mathlib4.git", + "subDir?": null, + "rev": "cb02d09e1d5611d22efc2b406e7893f246b2f51e", + "name": "mathlib", + "inputRev?": null}}, + {"git": + {"url": "https://github.com/gebner/quote4", + "subDir?": null, + "rev": "c71f94e34c1cda52eef5c93dc9da409ab2727420", + "name": "Qq", + "inputRev?": "master"}}, + {"git": + {"url": "https://github.com/JLimperg/aesop", + "subDir?": null, + "rev": "ca73109cc40837bc61df8024c9016da4b4f99d4c", + "name": "aesop", + "inputRev?": "master"}}, + {"git": + {"url": "https://github.com/leanprover/std4", + "subDir?": null, + "rev": "e68aa8f5fe47aad78987df45f99094afbcb5e936", + "name": "std", + "inputRev?": "main"}}]} diff --git a/tests/lean/lakefile.lean b/tests/lean/lakefile.lean new file mode 100644 index 00000000..da4293dd --- /dev/null +++ b/tests/lean/lakefile.lean @@ -0,0 +1,14 @@ +import Lake +open Lake DSL + +require mathlib from git + "https://github.com/leanprover-community/mathlib4.git" + +require Base from "../../backends/lean" + +package «tests» {} + +@[default_target] +lean_lib «Tests» {} + +lean_lib hashmap diff --git a/tests/lean/lean-toolchain b/tests/lean/lean-toolchain index bbf57f10..42e7d786 100644 --- a/tests/lean/lean-toolchain +++ b/tests/lean/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:nightly-2023-01-21 +leanprover/lean4:nightly-2023-06-20 \ No newline at end of file diff --git a/tests/lean/misc-constants/Base/Primitives.lean b/tests/lean/misc-constants/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-constants/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-constants/Constants.lean b/tests/lean/misc-constants/Constants.lean deleted file mode 100644 index 8306ed85..00000000 --- a/tests/lean/misc-constants/Constants.lean +++ /dev/null @@ -1,131 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [constants] -import Base.Primitives - -/- [constants::X0] -/ -def x0_body : Result U32 := Result.ret (U32.ofInt 0 (by intlit)) -def x0_c : U32 := eval_global x0_body (by simp) - -/- [core::num::u32::{9}::MAX] -/ -def core_num_u32_max_body : Result U32 := - Result.ret (U32.ofInt 4294967295 (by intlit)) -def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) - -/- [constants::X1] -/ -def x1_body : Result U32 := Result.ret core_num_u32_max_c -def x1_c : U32 := eval_global x1_body (by simp) - -/- [constants::X2] -/ -def x2_body : Result U32 := Result.ret (U32.ofInt 3 (by intlit)) -def x2_c : U32 := eval_global x2_body (by simp) - -/- [constants::incr] -/ -def incr_fwd (n : U32) : Result U32 := - n + (U32.ofInt 1 (by intlit)) - -/- [constants::X3] -/ -def x3_body : Result U32 := incr_fwd (U32.ofInt 32 (by intlit)) -def x3_c : U32 := eval_global x3_body (by simp) - -/- [constants::mk_pair0] -/ -def mk_pair0_fwd (x : U32) (y : U32) : Result (U32 × U32) := - Result.ret (x, y) - -/- [constants::Pair] -/ -structure pair_t (T1 T2 : Type) where - pair_x : T1 - pair_y : T2 - -/- [constants::mk_pair1] -/ -def mk_pair1_fwd (x : U32) (y : U32) : Result (pair_t U32 U32) := - Result.ret { pair_x := x, pair_y := y } - -/- [constants::P0] -/ -def p0_body : Result (U32 × U32) := - mk_pair0_fwd (U32.ofInt 0 (by intlit)) (U32.ofInt 1 (by intlit)) -def p0_c : (U32 × U32) := eval_global p0_body (by simp) - -/- [constants::P1] -/ -def p1_body : Result (pair_t U32 U32) := - mk_pair1_fwd (U32.ofInt 0 (by intlit)) (U32.ofInt 1 (by intlit)) -def p1_c : pair_t U32 U32 := eval_global p1_body (by simp) - -/- [constants::P2] -/ -def p2_body : Result (U32 × U32) := - Result.ret ((U32.ofInt 0 (by intlit)), (U32.ofInt 1 (by intlit))) -def p2_c : (U32 × U32) := eval_global p2_body (by simp) - -/- [constants::P3] -/ -def p3_body : Result (pair_t U32 U32) := - Result.ret - { pair_x := (U32.ofInt 0 (by intlit)), pair_y := (U32.ofInt 1 (by intlit)) } -def p3_c : pair_t U32 U32 := eval_global p3_body (by simp) - -/- [constants::Wrap] -/ -structure wrap_t (T : Type) where - wrap_val : T - -/- [constants::Wrap::{0}::new] -/ -def wrap_new_fwd (T : Type) (val : T) : Result (wrap_t T) := - Result.ret { wrap_val := val } - -/- [constants::Y] -/ -def y_body : Result (wrap_t I32) := wrap_new_fwd I32 (I32.ofInt 2 (by intlit)) -def y_c : wrap_t I32 := eval_global y_body (by simp) - -/- [constants::unwrap_y] -/ -def unwrap_y_fwd : Result I32 := - Result.ret y_c.wrap_val - -/- [constants::YVAL] -/ -def yval_body : Result I32 := unwrap_y_fwd -def yval_c : I32 := eval_global yval_body (by simp) - -/- [constants::get_z1::Z1] -/ -def get_z1_z1_body : Result I32 := Result.ret (I32.ofInt 3 (by intlit)) -def get_z1_z1_c : I32 := eval_global get_z1_z1_body (by simp) - -/- [constants::get_z1] -/ -def get_z1_fwd : Result I32 := - Result.ret get_z1_z1_c - -/- [constants::add] -/ -def add_fwd (a : I32) (b : I32) : Result I32 := - a + b - -/- [constants::Q1] -/ -def q1_body : Result I32 := Result.ret (I32.ofInt 5 (by intlit)) -def q1_c : I32 := eval_global q1_body (by simp) - -/- [constants::Q2] -/ -def q2_body : Result I32 := Result.ret q1_c -def q2_c : I32 := eval_global q2_body (by simp) - -/- [constants::Q3] -/ -def q3_body : Result I32 := add_fwd q2_c (I32.ofInt 3 (by intlit)) -def q3_c : I32 := eval_global q3_body (by simp) - -/- [constants::get_z2] -/ -def get_z2_fwd : Result I32 := - do - let i ← get_z1_fwd - let i0 ← add_fwd i q3_c - add_fwd q1_c i0 - -/- [constants::S1] -/ -def s1_body : Result U32 := Result.ret (U32.ofInt 6 (by intlit)) -def s1_c : U32 := eval_global s1_body (by simp) - -/- [constants::S2] -/ -def s2_body : Result U32 := incr_fwd s1_c -def s2_c : U32 := eval_global s2_body (by simp) - -/- [constants::S3] -/ -def s3_body : Result (pair_t U32 U32) := Result.ret p3_c -def s3_c : pair_t U32 U32 := eval_global s3_body (by simp) - -/- [constants::S4] -/ -def s4_body : Result (pair_t U32 U32) := - mk_pair1_fwd (U32.ofInt 7 (by intlit)) (U32.ofInt 8 (by intlit)) -def s4_c : pair_t U32 U32 := eval_global s4_body (by simp) - diff --git a/tests/lean/misc-constants/lake-manifest.json b/tests/lean/misc-constants/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-constants/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-constants/lakefile.lean b/tests/lean/misc-constants/lakefile.lean deleted file mode 100644 index 01aacb90..00000000 --- a/tests/lean/misc-constants/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «constants» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «Constants» {} diff --git a/tests/lean/misc-constants/lean-toolchain b/tests/lean/misc-constants/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-constants/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-external/Base/Primitives.lean b/tests/lean/misc-external/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-external/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-external/External.lean b/tests/lean/misc-external/External.lean deleted file mode 100644 index b95db309..00000000 --- a/tests/lean/misc-external/External.lean +++ /dev/null @@ -1 +0,0 @@ -import External.Funs diff --git a/tests/lean/misc-external/External/ExternalFuns.lean b/tests/lean/misc-external/External/ExternalFuns.lean deleted file mode 100644 index 6bd4f4a9..00000000 --- a/tests/lean/misc-external/External/ExternalFuns.lean +++ /dev/null @@ -1,5 +0,0 @@ -import Base.Primitives -import External.Types -import External.Opaque - -def opaque_defs : OpaqueDefs := sorry diff --git a/tests/lean/misc-external/External/Funs.lean b/tests/lean/misc-external/External/Funs.lean deleted file mode 100644 index eeb83989..00000000 --- a/tests/lean/misc-external/External/Funs.lean +++ /dev/null @@ -1,84 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [external]: function definitions -import Base.Primitives -import External.Types -import External.ExternalFuns - -/- [external::swap] -/ -def swap_fwd - (T : Type) (x : T) (y : T) (st : State) : Result (State × Unit) := - do - let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st - let (st1, _) ← opaque_defs.core_mem_swap_back0 T x y st st0 - let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1 - Result.ret (st2, ()) - -/- [external::swap] -/ -def swap_back - (T : Type) (x : T) (y : T) (st : State) (st0 : State) : - Result (State × (T × T)) - := - do - let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st - let (st2, x0) ← opaque_defs.core_mem_swap_back0 T x y st st1 - let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2 - Result.ret (st0, (x0, y0)) - -/- [external::test_new_non_zero_u32] -/ -def test_new_non_zero_u32_fwd - (x : U32) (st : State) : Result (State × core_num_nonzero_non_zero_u32_t) := - do - let (st0, opt) ← opaque_defs.core_num_nonzero_non_zero_u32_new_fwd x st - opaque_defs.core_option_option_unwrap_fwd core_num_nonzero_non_zero_u32_t - opt st0 - -/- [external::test_vec] -/ -def test_vec_fwd : Result Unit := - do - let v := vec_new U32 - let _ ← vec_push_back U32 v (U32.ofInt 0 (by intlit)) - Result.ret () - -/- [external::custom_swap] -/ -def custom_swap_fwd - (T : Type) (x : T) (y : T) (st : State) : Result (State × T) := - do - let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st - let (st1, x0) ← opaque_defs.core_mem_swap_back0 T x y st st0 - let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1 - Result.ret (st2, x0) - -/- [external::custom_swap] -/ -def custom_swap_back - (T : Type) (x : T) (y : T) (st : State) (ret0 : T) (st0 : State) : - Result (State × (T × T)) - := - do - let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st - let (st2, _) ← opaque_defs.core_mem_swap_back0 T x y st st1 - let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2 - Result.ret (st0, (ret0, y0)) - -/- [external::test_custom_swap] -/ -def test_custom_swap_fwd - (x : U32) (y : U32) (st : State) : Result (State × Unit) := - do - let (st0, _) ← custom_swap_fwd U32 x y st - Result.ret (st0, ()) - -/- [external::test_custom_swap] -/ -def test_custom_swap_back - (x : U32) (y : U32) (st : State) (st0 : State) : - Result (State × (U32 × U32)) - := - custom_swap_back U32 x y st (U32.ofInt 1 (by intlit)) st0 - -/- [external::test_swap_non_zero] -/ -def test_swap_non_zero_fwd (x : U32) (st : State) : Result (State × U32) := - do - let (st0, _) ← swap_fwd U32 x (U32.ofInt 0 (by intlit)) st - let (st1, (x0, _)) ← swap_back U32 x (U32.ofInt 0 (by intlit)) st st0 - if h: x0 = (U32.ofInt 0 (by intlit)) - then Result.fail Error.panic - else Result.ret (st1, x0) - diff --git a/tests/lean/misc-external/External/Opaque.lean b/tests/lean/misc-external/External/Opaque.lean deleted file mode 100644 index d641912b..00000000 --- a/tests/lean/misc-external/External/Opaque.lean +++ /dev/null @@ -1,27 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [external]: opaque function definitions -import Base.Primitives -import External.Types - -structure OpaqueDefs where - - /- [core::mem::swap] -/ - core_mem_swap_fwd (T : Type) : T -> T -> State -> Result (State × Unit) - - /- [core::mem::swap] -/ - core_mem_swap_back0 - (T : Type) : T -> T -> State -> State -> Result (State × T) - - /- [core::mem::swap] -/ - core_mem_swap_back1 - (T : Type) : T -> T -> State -> State -> Result (State × T) - - /- [core::num::nonzero::NonZeroU32::{14}::new] -/ - core_num_nonzero_non_zero_u32_new_fwd - : - U32 -> State -> Result (State × (Option core_num_nonzero_non_zero_u32_t)) - - /- [core::option::Option::{0}::unwrap] -/ - core_option_option_unwrap_fwd - (T : Type) : Option T -> State -> Result (State × T) - diff --git a/tests/lean/misc-external/External/Types.lean b/tests/lean/misc-external/External/Types.lean deleted file mode 100644 index ed1842be..00000000 --- a/tests/lean/misc-external/External/Types.lean +++ /dev/null @@ -1,10 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [external]: type definitions -import Base.Primitives - -/- [core::num::nonzero::NonZeroU32] -/ -axiom core_num_nonzero_non_zero_u32_t : Type - -/- The state type used in the state-error monad -/ -axiom State : Type - diff --git a/tests/lean/misc-external/lake-manifest.json b/tests/lean/misc-external/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-external/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-external/lakefile.lean b/tests/lean/misc-external/lakefile.lean deleted file mode 100644 index 6cc4aae4..00000000 --- a/tests/lean/misc-external/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «external» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «External» {} diff --git a/tests/lean/misc-external/lean-toolchain b/tests/lean/misc-external/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-external/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-loops/Base/Primitives.lean b/tests/lean/misc-loops/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-loops/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-loops/Loops.lean b/tests/lean/misc-loops/Loops.lean deleted file mode 100644 index 60c73776..00000000 --- a/tests/lean/misc-loops/Loops.lean +++ /dev/null @@ -1 +0,0 @@ -import Loops.Funs diff --git a/tests/lean/misc-loops/Loops/Clauses/Clauses.lean b/tests/lean/misc-loops/Loops/Clauses/Clauses.lean deleted file mode 100644 index 89a7ce34..00000000 --- a/tests/lean/misc-loops/Loops/Clauses/Clauses.lean +++ /dev/null @@ -1,205 +0,0 @@ --- [loops]: decreases clauses -import Base.Primitives -import Loops.Types - -/- [loops::sum]: termination measure -/ -@[simp] -def sum_loop_terminates (max : U32) (i : U32) (s : U32) := (max, i, s) - -syntax "sum_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| sum_loop_decreases $max $i $s) =>`(tactic| sorry) - -/- [loops::sum_with_mut_borrows]: termination measure -/ -@[simp] -def sum_with_mut_borrows_loop_terminates (max : U32) (mi : U32) (ms : U32) := - (max, mi, ms) - -syntax "sum_with_mut_borrows_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| sum_with_mut_borrows_loop_decreases $max $mi $ms) =>`(tactic| sorry) - -/- [loops::sum_with_shared_borrows]: termination measure -/ -@[simp] -def sum_with_shared_borrows_loop_terminates (max : U32) (i : U32) (s : U32) := - (max, i, s) - -syntax "sum_with_shared_borrows_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| sum_with_shared_borrows_loop_decreases $max $i $s) =>`(tactic| sorry) - -/- [loops::clear]: termination measure -/ -@[simp] def clear_loop_terminates (v : Vec U32) (i : Usize) := (v, i) - -syntax "clear_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| clear_loop_decreases $v $i) =>`(tactic| sorry) - -/- [loops::list_mem]: termination measure -/ -@[simp] -def list_mem_loop_terminates (x : U32) (ls : list_t U32) := (x, ls) - -syntax "list_mem_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_mem_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop]: termination measure -/ -@[simp] -def list_nth_mut_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) := - (ls, i) - -syntax "list_nth_mut_loop_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_loop_loop_decreases $ls $i) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop]: termination measure -/ -@[simp] -def list_nth_shared_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) := - (ls, i) - -syntax "list_nth_shared_loop_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_loop_loop_decreases $ls $i) =>`(tactic| sorry) - -/- [loops::get_elem_mut]: termination measure -/ -@[simp] -def get_elem_mut_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls) - -syntax "get_elem_mut_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| get_elem_mut_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::get_elem_shared]: termination measure -/ -@[simp] -def get_elem_shared_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls) - -syntax "get_elem_shared_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| get_elem_shared_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop_with_id]: termination measure -/ -@[simp] -def list_nth_mut_loop_with_id_loop_terminates (T : Type) (i : U32) - (ls : list_t T) := - (i, ls) - -syntax "list_nth_mut_loop_with_id_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop_with_id]: termination measure -/ -@[simp] -def list_nth_shared_loop_with_id_loop_terminates (T : Type) (i : U32) - (ls : list_t T) := - (i, ls) - -syntax "list_nth_shared_loop_with_id_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop_pair]: termination measure -/ -@[simp] -def list_nth_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_mut_loop_pair_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop_pair]: termination measure -/ -@[simp] -def list_nth_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_shared_loop_pair_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_mut_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_mut_loop_pair_merge_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_shared_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_shared_loop_pair_merge_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_shared_loop_pair]: termination measure -/ -@[simp] -def list_nth_mut_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_mut_shared_loop_pair_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_shared_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_shared_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_mut_shared_loop_pair_merge_loop_terminates (T : Type) - (ls0 : list_t T) (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_mut_shared_loop_pair_merge_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_mut_loop_pair]: termination measure -/ -@[simp] -def list_nth_shared_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_shared_mut_loop_pair_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_mut_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_mut_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_shared_mut_loop_pair_merge_loop_terminates (T : Type) - (ls0 : list_t T) (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_shared_mut_loop_pair_merge_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - diff --git a/tests/lean/misc-loops/Loops/Clauses/Template.lean b/tests/lean/misc-loops/Loops/Clauses/Template.lean deleted file mode 100644 index 2e28a6c0..00000000 --- a/tests/lean/misc-loops/Loops/Clauses/Template.lean +++ /dev/null @@ -1,205 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [loops]: templates for the decreases clauses -import Base.Primitives -import Loops.Types - -/- [loops::sum]: termination measure -/ -@[simp] def sum_loop_terminates (max : U32) (i : U32) (s : U32) := (max, i, s) - -/- [loops::sum]: decreases_by tactic -/ -syntax "sum_loop_decreases" term+ : tactic -macro_rules -| `(tactic| sum_loop_decreases $max $i $s) =>`(tactic| sorry) - -/- [loops::sum_with_mut_borrows]: termination measure -/ -@[simp] -def sum_with_mut_borrows_loop_terminates (max : U32) (mi : U32) (ms : U32) := - (max, mi, ms) - -/- [loops::sum_with_mut_borrows]: decreases_by tactic -/ -syntax "sum_with_mut_borrows_loop_decreases" term+ : tactic -macro_rules -| `(tactic| sum_with_mut_borrows_loop_decreases $max $mi $ms) =>`(tactic| sorry) - -/- [loops::sum_with_shared_borrows]: termination measure -/ -@[simp] -def sum_with_shared_borrows_loop_terminates (max : U32) (i : U32) (s : U32) := - (max, i, s) - -/- [loops::sum_with_shared_borrows]: decreases_by tactic -/ -syntax "sum_with_shared_borrows_loop_decreases" term+ : tactic -macro_rules -| `(tactic| sum_with_shared_borrows_loop_decreases $max $i $s) =>`(tactic| sorry) - -/- [loops::clear]: termination measure -/ -@[simp] def clear_loop_terminates (v : Vec U32) (i : Usize) := (v, i) - -/- [loops::clear]: decreases_by tactic -/ -syntax "clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| clear_loop_decreases $v $i) =>`(tactic| sorry) - -/- [loops::list_mem]: termination measure -/ -@[simp] def list_mem_loop_terminates (x : U32) (ls : list_t U32) := (x, ls) - -/- [loops::list_mem]: decreases_by tactic -/ -syntax "list_mem_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_mem_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop]: termination measure -/ -@[simp] -def list_nth_mut_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) := - (ls, i) - -/- [loops::list_nth_mut_loop]: decreases_by tactic -/ -syntax "list_nth_mut_loop_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_loop_loop_decreases $ls $i) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop]: termination measure -/ -@[simp] -def list_nth_shared_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) - := - (ls, i) - -/- [loops::list_nth_shared_loop]: decreases_by tactic -/ -syntax "list_nth_shared_loop_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_loop_loop_decreases $ls $i) =>`(tactic| sorry) - -/- [loops::get_elem_mut]: termination measure -/ -@[simp] -def get_elem_mut_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls) - -/- [loops::get_elem_mut]: decreases_by tactic -/ -syntax "get_elem_mut_loop_decreases" term+ : tactic -macro_rules -| `(tactic| get_elem_mut_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::get_elem_shared]: termination measure -/ -@[simp] -def get_elem_shared_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls) - -/- [loops::get_elem_shared]: decreases_by tactic -/ -syntax "get_elem_shared_loop_decreases" term+ : tactic -macro_rules -| `(tactic| get_elem_shared_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop_with_id]: termination measure -/ -@[simp] -def list_nth_mut_loop_with_id_loop_terminates (T : Type) (i : U32) - (ls : list_t T) := - (i, ls) - -/- [loops::list_nth_mut_loop_with_id]: decreases_by tactic -/ -syntax "list_nth_mut_loop_with_id_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop_with_id]: termination measure -/ -@[simp] -def list_nth_shared_loop_with_id_loop_terminates (T : Type) (i : U32) - (ls : list_t T) := - (i, ls) - -/- [loops::list_nth_shared_loop_with_id]: decreases_by tactic -/ -syntax "list_nth_shared_loop_with_id_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop_pair]: termination measure -/ -@[simp] -def list_nth_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_mut_loop_pair]: decreases_by tactic -/ -syntax "list_nth_mut_loop_pair_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop_pair]: termination measure -/ -@[simp] -def list_nth_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_shared_loop_pair]: decreases_by tactic -/ -syntax "list_nth_shared_loop_pair_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_mut_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_mut_loop_pair_merge]: decreases_by tactic -/ -syntax "list_nth_mut_loop_pair_merge_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_shared_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_shared_loop_pair_merge]: decreases_by tactic -/ -syntax "list_nth_shared_loop_pair_merge_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_shared_loop_pair]: termination measure -/ -@[simp] -def list_nth_mut_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_mut_shared_loop_pair]: decreases_by tactic -/ -syntax "list_nth_mut_shared_loop_pair_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_shared_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_shared_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_mut_shared_loop_pair_merge_loop_terminates (T : Type) - (ls0 : list_t T) (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_mut_shared_loop_pair_merge]: decreases_by tactic -/ -syntax "list_nth_mut_shared_loop_pair_merge_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_mut_loop_pair]: termination measure -/ -@[simp] -def list_nth_shared_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_shared_mut_loop_pair]: decreases_by tactic -/ -syntax "list_nth_shared_mut_loop_pair_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_mut_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_mut_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_shared_mut_loop_pair_merge_loop_terminates (T : Type) - (ls0 : list_t T) (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_shared_mut_loop_pair_merge]: decreases_by tactic -/ -syntax "list_nth_shared_mut_loop_pair_merge_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - diff --git a/tests/lean/misc-loops/Loops/Funs.lean b/tests/lean/misc-loops/Loops/Funs.lean deleted file mode 100644 index fd8d62d7..00000000 --- a/tests/lean/misc-loops/Loops/Funs.lean +++ /dev/null @@ -1,705 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [loops]: function definitions -import Base.Primitives -import Loops.Types -import Loops.Clauses.Clauses - -/- [loops::sum] -/ -def sum_loop_fwd (max : U32) (i : U32) (s : U32) : (Result U32) := - if h: i < max - then - do - let s0 ← s + i - let i0 ← i + (U32.ofInt 1 (by intlit)) - sum_loop_fwd max i0 s0 - else s * (U32.ofInt 2 (by intlit)) -termination_by sum_loop_fwd max i s => sum_loop_terminates max i s -decreasing_by sum_loop_decreases max i s - -/- [loops::sum] -/ -def sum_fwd (max : U32) : Result U32 := - sum_loop_fwd max (U32.ofInt 0 (by intlit)) (U32.ofInt 0 (by intlit)) - -/- [loops::sum_with_mut_borrows] -/ -def sum_with_mut_borrows_loop_fwd - (max : U32) (mi : U32) (ms : U32) : (Result U32) := - if h: mi < max - then - do - let ms0 ← ms + mi - let mi0 ← mi + (U32.ofInt 1 (by intlit)) - sum_with_mut_borrows_loop_fwd max mi0 ms0 - else ms * (U32.ofInt 2 (by intlit)) -termination_by sum_with_mut_borrows_loop_fwd max mi ms => - sum_with_mut_borrows_loop_terminates max mi ms -decreasing_by sum_with_mut_borrows_loop_decreases max mi ms - -/- [loops::sum_with_mut_borrows] -/ -def sum_with_mut_borrows_fwd (max : U32) : Result U32 := - sum_with_mut_borrows_loop_fwd max (U32.ofInt 0 (by intlit)) - (U32.ofInt 0 (by intlit)) - -/- [loops::sum_with_shared_borrows] -/ -def sum_with_shared_borrows_loop_fwd - (max : U32) (i : U32) (s : U32) : (Result U32) := - if h: i < max - then - do - let i0 ← i + (U32.ofInt 1 (by intlit)) - let s0 ← s + i0 - sum_with_shared_borrows_loop_fwd max i0 s0 - else s * (U32.ofInt 2 (by intlit)) -termination_by sum_with_shared_borrows_loop_fwd max i s => - sum_with_shared_borrows_loop_terminates max i s -decreasing_by sum_with_shared_borrows_loop_decreases max i s - -/- [loops::sum_with_shared_borrows] -/ -def sum_with_shared_borrows_fwd (max : U32) : Result U32 := - sum_with_shared_borrows_loop_fwd max (U32.ofInt 0 (by intlit)) - (U32.ofInt 0 (by intlit)) - -/- [loops::clear] -/ -def clear_loop_fwd_back (v : Vec U32) (i : Usize) : (Result (Vec U32)) := - let i0 := vec_len U32 v - if h: i < i0 - then - do - let i1 ← i + (Usize.ofInt 1 (by intlit)) - let v0 ← vec_index_mut_back U32 v i (U32.ofInt 0 (by intlit)) - clear_loop_fwd_back v0 i1 - else Result.ret v -termination_by clear_loop_fwd_back v i => clear_loop_terminates v i -decreasing_by clear_loop_decreases v i - -/- [loops::clear] -/ -def clear_fwd_back (v : Vec U32) : Result (Vec U32) := - clear_loop_fwd_back v (Usize.ofInt 0 (by intlit)) - -/- [loops::list_mem] -/ -def list_mem_loop_fwd (x : U32) (ls : list_t U32) : (Result Bool) := - match h: ls with - | list_t.Cons y tl => - if h: y = x - then Result.ret true - else list_mem_loop_fwd x tl - | list_t.Nil => Result.ret false -termination_by list_mem_loop_fwd x ls => list_mem_loop_terminates x ls -decreasing_by list_mem_loop_decreases x ls - -/- [loops::list_mem] -/ -def list_mem_fwd (x : U32) (ls : list_t U32) : Result Bool := - list_mem_loop_fwd x ls - -/- [loops::list_nth_mut_loop] -/ -def list_nth_mut_loop_loop_fwd - (T : Type) (ls : list_t T) (i : U32) : (Result T) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_loop_loop_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_loop_fwd ls i => - list_nth_mut_loop_loop_terminates T ls i -decreasing_by list_nth_mut_loop_loop_decreases ls i - -/- [loops::list_nth_mut_loop] -/ -def list_nth_mut_loop_fwd (T : Type) (ls : list_t T) (i : U32) : Result T := - list_nth_mut_loop_loop_fwd T ls i - -/- [loops::list_nth_mut_loop] -/ -def list_nth_mut_loop_loop_back - (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : (Result (list_t T)) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl0 ← list_nth_mut_loop_loop_back T tl i0 ret0 - Result.ret (list_t.Cons x tl0) - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_loop_back ls i ret0 => - list_nth_mut_loop_loop_terminates T ls i -decreasing_by list_nth_mut_loop_loop_decreases ls i - -/- [loops::list_nth_mut_loop] -/ -def list_nth_mut_loop_back - (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := - list_nth_mut_loop_loop_back T ls i ret0 - -/- [loops::list_nth_shared_loop] -/ -def list_nth_shared_loop_loop_fwd - (T : Type) (ls : list_t T) (i : U32) : (Result T) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_loop_loop_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_loop_loop_fwd ls i => - list_nth_shared_loop_loop_terminates T ls i -decreasing_by list_nth_shared_loop_loop_decreases ls i - -/- [loops::list_nth_shared_loop] -/ -def list_nth_shared_loop_fwd (T : Type) (ls : list_t T) (i : U32) : Result T := - list_nth_shared_loop_loop_fwd T ls i - -/- [loops::get_elem_mut] -/ -def get_elem_mut_loop_fwd (x : Usize) (ls : list_t Usize) : (Result Usize) := - match h: ls with - | list_t.Cons y tl => - if h: y = x - then Result.ret y - else get_elem_mut_loop_fwd x tl - | list_t.Nil => Result.fail Error.panic -termination_by get_elem_mut_loop_fwd x ls => get_elem_mut_loop_terminates x ls -decreasing_by get_elem_mut_loop_decreases x ls - -/- [loops::get_elem_mut] -/ -def get_elem_mut_fwd (slots : Vec (list_t Usize)) (x : Usize) : Result Usize := - do - let l ← - vec_index_mut_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) - get_elem_mut_loop_fwd x l - -/- [loops::get_elem_mut] -/ -def get_elem_mut_loop_back - (x : Usize) (ls : list_t Usize) (ret0 : Usize) : (Result (list_t Usize)) := - match h: ls with - | list_t.Cons y tl => - if h: y = x - then Result.ret (list_t.Cons ret0 tl) - else - do - let tl0 ← get_elem_mut_loop_back x tl ret0 - Result.ret (list_t.Cons y tl0) - | list_t.Nil => Result.fail Error.panic -termination_by get_elem_mut_loop_back x ls ret0 => - get_elem_mut_loop_terminates x ls -decreasing_by get_elem_mut_loop_decreases x ls - -/- [loops::get_elem_mut] -/ -def get_elem_mut_back - (slots : Vec (list_t Usize)) (x : Usize) (ret0 : Usize) : - Result (Vec (list_t Usize)) - := - do - let l ← - vec_index_mut_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) - let l0 ← get_elem_mut_loop_back x l ret0 - vec_index_mut_back (list_t Usize) slots (Usize.ofInt 0 (by intlit)) l0 - -/- [loops::get_elem_shared] -/ -def get_elem_shared_loop_fwd - (x : Usize) (ls : list_t Usize) : (Result Usize) := - match h: ls with - | list_t.Cons y tl => - if h: y = x - then Result.ret y - else get_elem_shared_loop_fwd x tl - | list_t.Nil => Result.fail Error.panic -termination_by get_elem_shared_loop_fwd x ls => - get_elem_shared_loop_terminates x ls -decreasing_by get_elem_shared_loop_decreases x ls - -/- [loops::get_elem_shared] -/ -def get_elem_shared_fwd - (slots : Vec (list_t Usize)) (x : Usize) : Result Usize := - do - let l ← vec_index_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) - get_elem_shared_loop_fwd x l - -/- [loops::id_mut] -/ -def id_mut_fwd (T : Type) (ls : list_t T) : Result (list_t T) := - Result.ret ls - -/- [loops::id_mut] -/ -def id_mut_back - (T : Type) (ls : list_t T) (ret0 : list_t T) : Result (list_t T) := - Result.ret ret0 - -/- [loops::id_shared] -/ -def id_shared_fwd (T : Type) (ls : list_t T) : Result (list_t T) := - Result.ret ls - -/- [loops::list_nth_mut_loop_with_id] -/ -def list_nth_mut_loop_with_id_loop_fwd - (T : Type) (i : U32) (ls : list_t T) : (Result T) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_loop_with_id_loop_fwd T i0 tl - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_with_id_loop_fwd i ls => - list_nth_mut_loop_with_id_loop_terminates T i ls -decreasing_by list_nth_mut_loop_with_id_loop_decreases i ls - -/- [loops::list_nth_mut_loop_with_id] -/ -def list_nth_mut_loop_with_id_fwd - (T : Type) (ls : list_t T) (i : U32) : Result T := - do - let ls0 ← id_mut_fwd T ls - list_nth_mut_loop_with_id_loop_fwd T i ls0 - -/- [loops::list_nth_mut_loop_with_id] -/ -def list_nth_mut_loop_with_id_loop_back - (T : Type) (i : U32) (ls : list_t T) (ret0 : T) : (Result (list_t T)) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl0 ← list_nth_mut_loop_with_id_loop_back T i0 tl ret0 - Result.ret (list_t.Cons x tl0) - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_with_id_loop_back i ls ret0 => - list_nth_mut_loop_with_id_loop_terminates T i ls -decreasing_by list_nth_mut_loop_with_id_loop_decreases i ls - -/- [loops::list_nth_mut_loop_with_id] -/ -def list_nth_mut_loop_with_id_back - (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := - do - let ls0 ← id_mut_fwd T ls - let l ← list_nth_mut_loop_with_id_loop_back T i ls0 ret0 - id_mut_back T ls l - -/- [loops::list_nth_shared_loop_with_id] -/ -def list_nth_shared_loop_with_id_loop_fwd - (T : Type) (i : U32) (ls : list_t T) : (Result T) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_loop_with_id_loop_fwd T i0 tl - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_loop_with_id_loop_fwd i ls => - list_nth_shared_loop_with_id_loop_terminates T i ls -decreasing_by list_nth_shared_loop_with_id_loop_decreases i ls - -/- [loops::list_nth_shared_loop_with_id] -/ -def list_nth_shared_loop_with_id_fwd - (T : Type) (ls : list_t T) (i : U32) : Result T := - do - let ls0 ← id_shared_fwd T ls - list_nth_shared_loop_with_id_loop_fwd T i ls0 - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_loop_pair_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_loop_fwd ls0 ls1 i => - list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_mut_loop_pair_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_loop_back'a - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl0) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl00 ← list_nth_mut_loop_pair_loop_back'a T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x0 tl00) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_loop_back'a ls0 ls1 i ret0 => - list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_back'a - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_mut_loop_pair_loop_back'a T ls0 ls1 i ret0 - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_loop_back'b - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl10 ← list_nth_mut_loop_pair_loop_back'b T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x1 tl10) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_loop_back'b ls0 ls1 i ret0 => - list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_back'b - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_mut_loop_pair_loop_back'b T ls0 ls1 i ret0 - -/- [loops::list_nth_shared_loop_pair] -/ -def list_nth_shared_loop_pair_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_loop_pair_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_loop_pair_loop_fwd ls0 ls1 i => - list_nth_shared_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_loop_pair] -/ -def list_nth_shared_loop_pair_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_shared_loop_pair_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair_merge] -/ -def list_nth_mut_loop_pair_merge_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_merge_loop_fwd ls0 ls1 i => - list_nth_mut_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair_merge] -/ -def list_nth_mut_loop_pair_merge_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_mut_loop_pair_merge_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair_merge] -/ -def list_nth_mut_loop_pair_merge_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : (T × T)) : - (Result ((list_t T) × (list_t T))) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then - let (t, t0) := ret0 - Result.ret (list_t.Cons t tl0, list_t.Cons t0 tl1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let (tl00, tl10) ← - list_nth_mut_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x0 tl00, list_t.Cons x1 tl10) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_merge_loop_back ls0 ls1 i ret0 => - list_nth_mut_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair_merge] -/ -def list_nth_mut_loop_pair_merge_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : (T × T)) : - Result ((list_t T) × (list_t T)) - := - list_nth_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0 - -/- [loops::list_nth_shared_loop_pair_merge] -/ -def list_nth_shared_loop_pair_merge_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_loop_pair_merge_loop_fwd ls0 ls1 i => - list_nth_shared_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_loop_pair_merge] -/ -def list_nth_shared_loop_pair_merge_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_shared_loop_pair_merge_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair] -/ -def list_nth_mut_shared_loop_pair_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_shared_loop_pair_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_shared_loop_pair_loop_fwd ls0 ls1 i => - list_nth_mut_shared_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_shared_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair] -/ -def list_nth_mut_shared_loop_pair_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_mut_shared_loop_pair_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair] -/ -def list_nth_mut_shared_loop_pair_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl0) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl00 ← - list_nth_mut_shared_loop_pair_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x0 tl00) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_shared_loop_pair_loop_back ls0 ls1 i ret0 => - list_nth_mut_shared_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_shared_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair] -/ -def list_nth_mut_shared_loop_pair_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_mut_shared_loop_pair_loop_back T ls0 ls1 i ret0 - -/- [loops::list_nth_mut_shared_loop_pair_merge] -/ -def list_nth_mut_shared_loop_pair_merge_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_shared_loop_pair_merge_loop_fwd ls0 ls1 i => - list_nth_mut_shared_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_shared_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair_merge] -/ -def list_nth_mut_shared_loop_pair_merge_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_mut_shared_loop_pair_merge_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair_merge] -/ -def list_nth_mut_shared_loop_pair_merge_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl0) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl00 ← - list_nth_mut_shared_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x0 tl00) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_shared_loop_pair_merge_loop_back ls0 ls1 i ret0 => - list_nth_mut_shared_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_shared_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair_merge] -/ -def list_nth_mut_shared_loop_pair_merge_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_mut_shared_loop_pair_merge_loop_back T ls0 ls1 i ret0 - -/- [loops::list_nth_shared_mut_loop_pair] -/ -def list_nth_shared_mut_loop_pair_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_mut_loop_pair_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_mut_loop_pair_loop_fwd ls0 ls1 i => - list_nth_shared_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair] -/ -def list_nth_shared_mut_loop_pair_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_shared_mut_loop_pair_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair] -/ -def list_nth_shared_mut_loop_pair_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl10 ← - list_nth_shared_mut_loop_pair_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x1 tl10) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_mut_loop_pair_loop_back ls0 ls1 i ret0 => - list_nth_shared_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair] -/ -def list_nth_shared_mut_loop_pair_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_shared_mut_loop_pair_loop_back T ls0 ls1 i ret0 - -/- [loops::list_nth_shared_mut_loop_pair_merge] -/ -def list_nth_shared_mut_loop_pair_merge_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_mut_loop_pair_merge_loop_fwd ls0 ls1 i => - list_nth_shared_mut_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_mut_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair_merge] -/ -def list_nth_shared_mut_loop_pair_merge_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_shared_mut_loop_pair_merge_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair_merge] -/ -def list_nth_shared_mut_loop_pair_merge_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl10 ← - list_nth_shared_mut_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x1 tl10) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_mut_loop_pair_merge_loop_back ls0 ls1 i ret0 => - list_nth_shared_mut_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_mut_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair_merge] -/ -def list_nth_shared_mut_loop_pair_merge_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_shared_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0 - diff --git a/tests/lean/misc-loops/Loops/Types.lean b/tests/lean/misc-loops/Loops/Types.lean deleted file mode 100644 index ca43f4c8..00000000 --- a/tests/lean/misc-loops/Loops/Types.lean +++ /dev/null @@ -1,9 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [loops]: type definitions -import Base.Primitives - -/- [loops::List] -/ -inductive list_t (T : Type) := -| Cons : T -> list_t T -> list_t T -| Nil : list_t T - diff --git a/tests/lean/misc-loops/lake-manifest.json b/tests/lean/misc-loops/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-loops/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-loops/lakefile.lean b/tests/lean/misc-loops/lakefile.lean deleted file mode 100644 index 097c0a7d..00000000 --- a/tests/lean/misc-loops/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «loops» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «Loops» {} diff --git a/tests/lean/misc-loops/lean-toolchain b/tests/lean/misc-loops/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-loops/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-no_nested_borrows/Base/Primitives.lean b/tests/lean/misc-no_nested_borrows/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-no_nested_borrows/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean b/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean deleted file mode 100644 index 12c7d8f7..00000000 --- a/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean +++ /dev/null @@ -1,538 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [no_nested_borrows] -import Base.Primitives - -/- [no_nested_borrows::Pair] -/ -structure pair_t (T1 T2 : Type) where - pair_x : T1 - pair_y : T2 - -/- [no_nested_borrows::List] -/ -inductive list_t (T : Type) := -| Cons : T -> list_t T -> list_t T -| Nil : list_t T - -/- [no_nested_borrows::One] -/ -inductive one_t (T1 : Type) := -| One : T1 -> one_t T1 - -/- [no_nested_borrows::EmptyEnum] -/ -inductive empty_enum_t := -| Empty : empty_enum_t - -/- [no_nested_borrows::Enum] -/ -inductive enum_t := -| Variant1 : enum_t -| Variant2 : enum_t - -/- [no_nested_borrows::EmptyStruct] -/ -structure empty_struct_t where - -/- [no_nested_borrows::Sum] -/ -inductive sum_t (T1 T2 : Type) := -| Left : T1 -> sum_t T1 T2 -| Right : T2 -> sum_t T1 T2 - -/- [no_nested_borrows::neg_test] -/ -def neg_test_fwd (x : I32) : Result I32 := - - x - -/- [no_nested_borrows::add_test] -/ -def add_test_fwd (x : U32) (y : U32) : Result U32 := - x + y - -/- [no_nested_borrows::subs_test] -/ -def subs_test_fwd (x : U32) (y : U32) : Result U32 := - x - y - -/- [no_nested_borrows::div_test] -/ -def div_test_fwd (x : U32) (y : U32) : Result U32 := - x / y - -/- [no_nested_borrows::div_test1] -/ -def div_test1_fwd (x : U32) : Result U32 := - x / (U32.ofInt 2 (by intlit)) - -/- [no_nested_borrows::rem_test] -/ -def rem_test_fwd (x : U32) (y : U32) : Result U32 := - x % y - -/- [no_nested_borrows::cast_test] -/ -def cast_test_fwd (x : U32) : Result I32 := - Scalar.cast .I32 x - -/- [no_nested_borrows::test2] -/ -def test2_fwd : Result Unit := - do - let _ ← (U32.ofInt 23 (by intlit)) + (U32.ofInt 44 (by intlit)) - Result.ret () - -/- Unit test for [no_nested_borrows::test2] -/ -#assert (test2_fwd == .ret ()) - -/- [no_nested_borrows::get_max] -/ -def get_max_fwd (x : U32) (y : U32) : Result U32 := - if h: x >= y - then Result.ret x - else Result.ret y - -/- [no_nested_borrows::test3] -/ -def test3_fwd : Result Unit := - do - let x ← get_max_fwd (U32.ofInt 4 (by intlit)) (U32.ofInt 3 (by intlit)) - let y ← get_max_fwd (U32.ofInt 10 (by intlit)) (U32.ofInt 11 (by intlit)) - let z ← x + y - if h: not (z = (U32.ofInt 15 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test3] -/ -#assert (test3_fwd == .ret ()) - -/- [no_nested_borrows::test_neg1] -/ -def test_neg1_fwd : Result Unit := - do - let y ← - (I32.ofInt 3 (by intlit)) - if h: not (y = (I32.ofInt (-(3:Int)) (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_neg1] -/ -#assert (test_neg1_fwd == .ret ()) - -/- [no_nested_borrows::refs_test1] -/ -def refs_test1_fwd : Result Unit := - if h: not ((I32.ofInt 1 (by intlit)) = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::refs_test1] -/ -#assert (refs_test1_fwd == .ret ()) - -/- [no_nested_borrows::refs_test2] -/ -def refs_test2_fwd : Result Unit := - if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else - if h: not ((I32.ofInt 0 (by intlit)) = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else - if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else - if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::refs_test2] -/ -#assert (refs_test2_fwd == .ret ()) - -/- [no_nested_borrows::test_list1] -/ -def test_list1_fwd : Result Unit := - Result.ret () - -/- Unit test for [no_nested_borrows::test_list1] -/ -#assert (test_list1_fwd == .ret ()) - -/- [no_nested_borrows::test_box1] -/ -def test_box1_fwd : Result Unit := - let b := (I32.ofInt 1 (by intlit)) - let x := b - if h: not (x = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_box1] -/ -#assert (test_box1_fwd == .ret ()) - -/- [no_nested_borrows::copy_int] -/ -def copy_int_fwd (x : I32) : Result I32 := - Result.ret x - -/- [no_nested_borrows::test_unreachable] -/ -def test_unreachable_fwd (b : Bool) : Result Unit := - if h: b - then Result.fail Error.panic - else Result.ret () - -/- [no_nested_borrows::test_panic] -/ -def test_panic_fwd (b : Bool) : Result Unit := - if h: b - then Result.fail Error.panic - else Result.ret () - -/- [no_nested_borrows::test_copy_int] -/ -def test_copy_int_fwd : Result Unit := - do - let y ← copy_int_fwd (I32.ofInt 0 (by intlit)) - if h: not ((I32.ofInt 0 (by intlit)) = y) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_copy_int] -/ -#assert (test_copy_int_fwd == .ret ()) - -/- [no_nested_borrows::is_cons] -/ -def is_cons_fwd (T : Type) (l : list_t T) : Result Bool := - match h: l with - | list_t.Cons t l0 => Result.ret true - | list_t.Nil => Result.ret false - -/- [no_nested_borrows::test_is_cons] -/ -def test_is_cons_fwd : Result Unit := - do - let l := list_t.Nil - let b ← is_cons_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l) - if h: not b - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_is_cons] -/ -#assert (test_is_cons_fwd == .ret ()) - -/- [no_nested_borrows::split_list] -/ -def split_list_fwd (T : Type) (l : list_t T) : Result (T × (list_t T)) := - match h: l with - | list_t.Cons hd tl => Result.ret (hd, tl) - | list_t.Nil => Result.fail Error.panic - -/- [no_nested_borrows::test_split_list] -/ -def test_split_list_fwd : Result Unit := - do - let l := list_t.Nil - let p ← split_list_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l) - let (hd, _) := p - if h: not (hd = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_split_list] -/ -#assert (test_split_list_fwd == .ret ()) - -/- [no_nested_borrows::choose] -/ -def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T := - if h: b - then Result.ret x - else Result.ret y - -/- [no_nested_borrows::choose] -/ -def choose_back - (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) := - if h: b - then Result.ret (ret0, y) - else Result.ret (x, ret0) - -/- [no_nested_borrows::choose_test] -/ -def choose_test_fwd : Result Unit := - do - let z ← - choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit)) - let z0 ← z + (I32.ofInt 1 (by intlit)) - if h: not (z0 = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let (x, y) ← - choose_back I32 true (I32.ofInt 0 (by intlit)) - (I32.ofInt 0 (by intlit)) z0 - if h: not (x = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - if h: not (y = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::choose_test] -/ -#assert (choose_test_fwd == .ret ()) - -/- [no_nested_borrows::test_char] -/ -def test_char_fwd : Result Char := - Result.ret 'a' - -mutual - -/- [no_nested_borrows::NodeElem] -/ -inductive node_elem_t (T : Type) := -| Cons : tree_t T -> node_elem_t T -> node_elem_t T -| Nil : node_elem_t T - -/- [no_nested_borrows::Tree] -/ -inductive tree_t (T : Type) := -| Leaf : T -> tree_t T -| Node : T -> node_elem_t T -> tree_t T -> tree_t T - -end - -/- [no_nested_borrows::list_length] -/ -def list_length_fwd (T : Type) (l : list_t T) : Result U32 := - match h: l with - | list_t.Cons t l1 => - do - let i ← list_length_fwd T l1 - (U32.ofInt 1 (by intlit)) + i - | list_t.Nil => Result.ret (U32.ofInt 0 (by intlit)) - -/- [no_nested_borrows::list_nth_shared] -/ -def list_nth_shared_fwd (T : Type) (l : list_t T) (i : U32) : Result T := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic - -/- [no_nested_borrows::list_nth_mut] -/ -def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic - -/- [no_nested_borrows::list_nth_mut] -/ -def list_nth_mut_back - (T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl0 ← list_nth_mut_back T tl i0 ret0 - Result.ret (list_t.Cons x tl0) - | list_t.Nil => Result.fail Error.panic - -/- [no_nested_borrows::list_rev_aux] -/ -def list_rev_aux_fwd - (T : Type) (li : list_t T) (lo : list_t T) : Result (list_t T) := - match h: li with - | list_t.Cons hd tl => list_rev_aux_fwd T tl (list_t.Cons hd lo) - | list_t.Nil => Result.ret lo - -/- [no_nested_borrows::list_rev] -/ -def list_rev_fwd_back (T : Type) (l : list_t T) : Result (list_t T) := - let li := mem_replace_fwd (list_t T) l list_t.Nil - list_rev_aux_fwd T li list_t.Nil - -/- [no_nested_borrows::test_list_functions] -/ -def test_list_functions_fwd : Result Unit := - do - let l := list_t.Nil - let l0 := list_t.Cons (I32.ofInt 2 (by intlit)) l - let l1 := list_t.Cons (I32.ofInt 1 (by intlit)) l0 - let i ← list_length_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l1) - if h: not (i = (U32.ofInt 3 (by intlit))) - then Result.fail Error.panic - else - do - let i0 ← - list_nth_shared_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l1) - (U32.ofInt 0 (by intlit)) - if h: not (i0 = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else - do - let i1 ← - list_nth_shared_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) - l1) (U32.ofInt 1 (by intlit)) - if h: not (i1 = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let i2 ← - list_nth_shared_fwd I32 (list_t.Cons - (I32.ofInt 0 (by intlit)) l1) (U32.ofInt 2 (by intlit)) - if h: not (i2 = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else - do - let ls ← - list_nth_mut_back I32 (list_t.Cons - (I32.ofInt 0 (by intlit)) l1) (U32.ofInt 1 (by intlit)) - (I32.ofInt 3 (by intlit)) - let i3 ← - list_nth_shared_fwd I32 ls (U32.ofInt 0 (by intlit)) - if h: not (i3 = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else - do - let i4 ← - list_nth_shared_fwd I32 ls (U32.ofInt 1 (by intlit)) - if h: not (i4 = (I32.ofInt 3 (by intlit))) - then Result.fail Error.panic - else - do - let i5 ← - list_nth_shared_fwd I32 ls - (U32.ofInt 2 (by intlit)) - if h: not (i5 = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_list_functions] -/ -#assert (test_list_functions_fwd == .ret ()) - -/- [no_nested_borrows::id_mut_pair1] -/ -def id_mut_pair1_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) := - Result.ret (x, y) - -/- [no_nested_borrows::id_mut_pair1] -/ -def id_mut_pair1_back - (T1 T2 : Type) (x : T1) (y : T2) (ret0 : (T1 × T2)) : Result (T1 × T2) := - let (t, t0) := ret0 - Result.ret (t, t0) - -/- [no_nested_borrows::id_mut_pair2] -/ -def id_mut_pair2_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) := - let (t, t0) := p - Result.ret (t, t0) - -/- [no_nested_borrows::id_mut_pair2] -/ -def id_mut_pair2_back - (T1 T2 : Type) (p : (T1 × T2)) (ret0 : (T1 × T2)) : Result (T1 × T2) := - let (t, t0) := ret0 - Result.ret (t, t0) - -/- [no_nested_borrows::id_mut_pair3] -/ -def id_mut_pair3_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) := - Result.ret (x, y) - -/- [no_nested_borrows::id_mut_pair3] -/ -def id_mut_pair3_back'a - (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T1) : Result T1 := - Result.ret ret0 - -/- [no_nested_borrows::id_mut_pair3] -/ -def id_mut_pair3_back'b - (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T2) : Result T2 := - Result.ret ret0 - -/- [no_nested_borrows::id_mut_pair4] -/ -def id_mut_pair4_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) := - let (t, t0) := p - Result.ret (t, t0) - -/- [no_nested_borrows::id_mut_pair4] -/ -def id_mut_pair4_back'a - (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T1) : Result T1 := - Result.ret ret0 - -/- [no_nested_borrows::id_mut_pair4] -/ -def id_mut_pair4_back'b - (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T2) : Result T2 := - Result.ret ret0 - -/- [no_nested_borrows::StructWithTuple] -/ -structure struct_with_tuple_t (T1 T2 : Type) where - struct_with_tuple_p : (T1 × T2) - -/- [no_nested_borrows::new_tuple1] -/ -def new_tuple1_fwd : Result (struct_with_tuple_t U32 U32) := - Result.ret - { - struct_with_tuple_p := - ((U32.ofInt 1 (by intlit)), (U32.ofInt 2 (by intlit))) - } - -/- [no_nested_borrows::new_tuple2] -/ -def new_tuple2_fwd : Result (struct_with_tuple_t I16 I16) := - Result.ret - { - struct_with_tuple_p := - ((I16.ofInt 1 (by intlit)), (I16.ofInt 2 (by intlit))) - } - -/- [no_nested_borrows::new_tuple3] -/ -def new_tuple3_fwd : Result (struct_with_tuple_t U64 I64) := - Result.ret - { - struct_with_tuple_p := - ((U64.ofInt 1 (by intlit)), (I64.ofInt 2 (by intlit))) - } - -/- [no_nested_borrows::StructWithPair] -/ -structure struct_with_pair_t (T1 T2 : Type) where - struct_with_pair_p : pair_t T1 T2 - -/- [no_nested_borrows::new_pair1] -/ -def new_pair1_fwd : Result (struct_with_pair_t U32 U32) := - Result.ret - { - struct_with_pair_p := - { - pair_x := (U32.ofInt 1 (by intlit)), - pair_y := (U32.ofInt 2 (by intlit)) - } - } - -/- [no_nested_borrows::test_constants] -/ -def test_constants_fwd : Result Unit := - do - let swt ← new_tuple1_fwd - let (i, _) := swt.struct_with_tuple_p - if h: not (i = (U32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let swt0 ← new_tuple2_fwd - let (i0, _) := swt0.struct_with_tuple_p - if h: not (i0 = (I16.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let swt1 ← new_tuple3_fwd - let (i1, _) := swt1.struct_with_tuple_p - if h: not (i1 = (U64.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let swp ← new_pair1_fwd - if h: not (swp.struct_with_pair_p.pair_x = - (U32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_constants] -/ -#assert (test_constants_fwd == .ret ()) - -/- [no_nested_borrows::test_weird_borrows1] -/ -def test_weird_borrows1_fwd : Result Unit := - Result.ret () - -/- Unit test for [no_nested_borrows::test_weird_borrows1] -/ -#assert (test_weird_borrows1_fwd == .ret ()) - -/- [no_nested_borrows::test_mem_replace] -/ -def test_mem_replace_fwd_back (px : U32) : Result U32 := - let y := mem_replace_fwd U32 px (U32.ofInt 1 (by intlit)) - if h: not (y = (U32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else Result.ret (U32.ofInt 2 (by intlit)) - -/- [no_nested_borrows::test_shared_borrow_bool1] -/ -def test_shared_borrow_bool1_fwd (b : Bool) : Result U32 := - if h: b - then Result.ret (U32.ofInt 0 (by intlit)) - else Result.ret (U32.ofInt 1 (by intlit)) - -/- [no_nested_borrows::test_shared_borrow_bool2] -/ -def test_shared_borrow_bool2_fwd : Result U32 := - Result.ret (U32.ofInt 0 (by intlit)) - -/- [no_nested_borrows::test_shared_borrow_enum1] -/ -def test_shared_borrow_enum1_fwd (l : list_t U32) : Result U32 := - match h: l with - | list_t.Cons i l0 => Result.ret (U32.ofInt 1 (by intlit)) - | list_t.Nil => Result.ret (U32.ofInt 0 (by intlit)) - -/- [no_nested_borrows::test_shared_borrow_enum2] -/ -def test_shared_borrow_enum2_fwd : Result U32 := - Result.ret (U32.ofInt 0 (by intlit)) - diff --git a/tests/lean/misc-no_nested_borrows/lake-manifest.json b/tests/lean/misc-no_nested_borrows/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-no_nested_borrows/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-no_nested_borrows/lakefile.lean b/tests/lean/misc-no_nested_borrows/lakefile.lean deleted file mode 100644 index 58619110..00000000 --- a/tests/lean/misc-no_nested_borrows/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «no_nested_borrows» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «NoNestedBorrows» {} diff --git a/tests/lean/misc-no_nested_borrows/lean-toolchain b/tests/lean/misc-no_nested_borrows/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-no_nested_borrows/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-paper/Base/Primitives.lean b/tests/lean/misc-paper/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-paper/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-paper/Paper.lean b/tests/lean/misc-paper/Paper.lean deleted file mode 100644 index 0b16fb8e..00000000 --- a/tests/lean/misc-paper/Paper.lean +++ /dev/null @@ -1,123 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [paper] -import Base.Primitives - -/- [paper::ref_incr] -/ -def ref_incr_fwd_back (x : I32) : Result I32 := - x + (I32.ofInt 1 (by intlit)) - -/- [paper::test_incr] -/ -def test_incr_fwd : Result Unit := - do - let x ← ref_incr_fwd_back (I32.ofInt 0 (by intlit)) - if h: not (x = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [paper::test_incr] -/ -#assert (test_incr_fwd == .ret ()) - -/- [paper::choose] -/ -def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T := - if h: b - then Result.ret x - else Result.ret y - -/- [paper::choose] -/ -def choose_back - (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) := - if h: b - then Result.ret (ret0, y) - else Result.ret (x, ret0) - -/- [paper::test_choose] -/ -def test_choose_fwd : Result Unit := - do - let z ← - choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit)) - let z0 ← z + (I32.ofInt 1 (by intlit)) - if h: not (z0 = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let (x, y) ← - choose_back I32 true (I32.ofInt 0 (by intlit)) - (I32.ofInt 0 (by intlit)) z0 - if h: not (x = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - if h: not (y = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [paper::test_choose] -/ -#assert (test_choose_fwd == .ret ()) - -/- [paper::List] -/ -inductive list_t (T : Type) := -| Cons : T -> list_t T -> list_t T -| Nil : list_t T - -/- [paper::list_nth_mut] -/ -def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic - -/- [paper::list_nth_mut] -/ -def list_nth_mut_back - (T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl0 ← list_nth_mut_back T tl i0 ret0 - Result.ret (list_t.Cons x tl0) - | list_t.Nil => Result.fail Error.panic - -/- [paper::sum] -/ -def sum_fwd (l : list_t I32) : Result I32 := - match h: l with - | list_t.Cons x tl => do - let i ← sum_fwd tl - x + i - | list_t.Nil => Result.ret (I32.ofInt 0 (by intlit)) - -/- [paper::test_nth] -/ -def test_nth_fwd : Result Unit := - do - let l := list_t.Nil - let l0 := list_t.Cons (I32.ofInt 3 (by intlit)) l - let l1 := list_t.Cons (I32.ofInt 2 (by intlit)) l0 - let x ← - list_nth_mut_fwd I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1) - (U32.ofInt 2 (by intlit)) - let x0 ← x + (I32.ofInt 1 (by intlit)) - let l2 ← - list_nth_mut_back I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1) - (U32.ofInt 2 (by intlit)) x0 - let i ← sum_fwd l2 - if h: not (i = (I32.ofInt 7 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [paper::test_nth] -/ -#assert (test_nth_fwd == .ret ()) - -/- [paper::call_choose] -/ -def call_choose_fwd (p : (U32 × U32)) : Result U32 := - do - let (px, py) := p - let pz ← choose_fwd U32 true px py - let pz0 ← pz + (U32.ofInt 1 (by intlit)) - let (px0, _) ← choose_back U32 true px py pz0 - Result.ret px0 - diff --git a/tests/lean/misc-paper/lake-manifest.json b/tests/lean/misc-paper/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-paper/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-paper/lakefile.lean b/tests/lean/misc-paper/lakefile.lean deleted file mode 100644 index 75d7208e..00000000 --- a/tests/lean/misc-paper/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «paper» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «Paper» {} diff --git a/tests/lean/misc-paper/lean-toolchain b/tests/lean/misc-paper/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-paper/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-polonius_list/Base/Primitives.lean b/tests/lean/misc-polonius_list/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-polonius_list/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-polonius_list/PoloniusList.lean b/tests/lean/misc-polonius_list/PoloniusList.lean deleted file mode 100644 index 79696996..00000000 --- a/tests/lean/misc-polonius_list/PoloniusList.lean +++ /dev/null @@ -1,31 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [polonius_list] -import Base.Primitives - -/- [polonius_list::List] -/ -inductive list_t (T : Type) := -| Cons : T -> list_t T -> list_t T -| Nil : list_t T - -/- [polonius_list::get_list_at_x] -/ -def get_list_at_x_fwd (ls : list_t U32) (x : U32) : Result (list_t U32) := - match h: ls with - | list_t.Cons hd tl => - if h: hd = x - then Result.ret (list_t.Cons hd tl) - else get_list_at_x_fwd tl x - | list_t.Nil => Result.ret list_t.Nil - -/- [polonius_list::get_list_at_x] -/ -def get_list_at_x_back - (ls : list_t U32) (x : U32) (ret0 : list_t U32) : Result (list_t U32) := - match h: ls with - | list_t.Cons hd tl => - if h: hd = x - then Result.ret ret0 - else - do - let tl0 ← get_list_at_x_back tl x ret0 - Result.ret (list_t.Cons hd tl0) - | list_t.Nil => Result.ret ret0 - diff --git a/tests/lean/misc-polonius_list/lake-manifest.json b/tests/lean/misc-polonius_list/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-polonius_list/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-polonius_list/lakefile.lean b/tests/lean/misc-polonius_list/lakefile.lean deleted file mode 100644 index e89d4259..00000000 --- a/tests/lean/misc-polonius_list/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «polonius_list» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «PoloniusList» {} diff --git a/tests/lean/misc-polonius_list/lean-toolchain b/tests/lean/misc-polonius_list/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-polonius_list/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 -- cgit v1.2.3