From 87d6f6c7c90bf7b427397d6bd2e2c70d610678e3 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Tue, 4 Jul 2023 14:57:51 +0200 Subject: Reorganize the Lean tests --- tests/lean/hashmap/Base/Primitives.lean | 583 -------------------------------- 1 file changed, 583 deletions(-) delete mode 100644 tests/lean/hashmap/Base/Primitives.lean (limited to 'tests/lean/hashmap/Base') diff --git a/tests/lean/hashmap/Base/Primitives.lean b/tests/lean/hashmap/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/hashmap/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas -- cgit v1.2.3