From 8cb83fd3bd1585f2a68a47580a55dfeee01d9f0a Mon Sep 17 00:00:00 2001 From: Son Ho Date: Thu, 11 Apr 2024 20:10:21 +0200 Subject: Update some Lean proofs --- tests/lean/Tutorial.lean | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) (limited to 'tests/lean/Tutorial.lean') diff --git a/tests/lean/Tutorial.lean b/tests/lean/Tutorial.lean index d92b2dd7..94b70991 100644 --- a/tests/lean/Tutorial.lean +++ b/tests/lean/Tutorial.lean @@ -18,7 +18,7 @@ namespace Tutorial def mul2_add1 (x : U32) : Result U32 := do let x1 ← x + x let x2 ← x1 + 1#u32 - ret x2 + ok x2 /- There are several things to note. @@ -75,9 +75,9 @@ def mul2_add1 (x : U32) : Result U32 := do -/ def mul2_add1_desugared (x : U32) : Result U32 := match Scalar.add x x with - | ret x1 => -- Success case + | ok x1 => -- Success case match Scalar.add x1 (U32.ofInt 1) with - | ret x2 => ret x2 + | ok x2 => ok x2 | error => error | error => error -- Propagating the errors @@ -105,7 +105,7 @@ theorem mul2_add1_spec -/ (h : 2 * ↑x + 1 ≤ U32.max) /- The postcondition -/ - : ∃ y, mul2_add1 x = ret y ∧ -- The call succeeds + : ∃ y, mul2_add1 x = ok y ∧ -- The call succeeds ↑ y = 2 * ↑x + (1 : Int) -- The output has the expected value := by /- The proof -/ @@ -154,7 +154,7 @@ theorem mul2_add1_spec -/ @[pspec] -- the [pspec] attribute saves the theorem in a database, for [progress] to use it theorem mul2_add1_spec2 (x : U32) (h : 2 * ↑x + 1 ≤ U32.max) - : ∃ y, mul2_add1 x = ret y ∧ + : ∃ y, mul2_add1 x = ok y ∧ ↑ y = 2 * ↑x + (1 : Int) := by rw [mul2_add1] @@ -172,7 +172,7 @@ def use_mul2_add1 (x : U32) (y : U32) : Result U32 := do @[pspec] theorem use_mul2_add1_spec (x : U32) (y : U32) (h : 2 * ↑x + 1 + ↑y ≤ U32.max) : - ∃ z, use_mul2_add1 x y = ret z ∧ + ∃ z, use_mul2_add1 x y = ok z ∧ ↑z = 2 * ↑x + (1 : Int) + ↑y := by rw [use_mul2_add1] -- Here we use [progress] on [mul2_add1] @@ -230,7 +230,7 @@ divergent def list_nth (T : Type) (l : CList T) (i : U32) : Result T := match l with | CCons x tl => if i = 0#u32 - then ret x + then ok x else do let i1 ← i - 1#u32 list_nth T tl i1 @@ -263,7 +263,7 @@ theorem list_nth_spec {T : Type} [Inhabited T] (l : CList T) (i : U32) -- Precondition: the index is in bounds (h : ↑i < l.to_list.len) -- Postcondition - : ∃ x, list_nth T l i = ret x ∧ + : ∃ x, list_nth T l i = ok x ∧ -- [x] is the ith element of [l] after conversion to [List] x = l.to_list.index ↑i := by @@ -340,7 +340,7 @@ theorem list_nth_spec {T : Type} [Inhabited T] (l : CList T) (i : U32) If in a theorem we state and prove that: ``` - ∃ y, i32_id x = ret x + ∃ y, i32_id x = ok x ``` we not only prove that the function doesn't fail, but also that it terminates. @@ -348,7 +348,7 @@ theorem list_nth_spec {T : Type} [Inhabited T] (l : CList T) (i : U32) annotates it with the [divergent] keyword. -/ divergent def i32_id (x : I32) : Result I32 := - if x = 0#i32 then ret 0#i32 + if x = 0#i32 then ok 0#i32 else do let x1 ← x - 1#i32 let x2 ← i32_id x1 @@ -356,7 +356,7 @@ divergent def i32_id (x : I32) : Result I32 := /- We can easily prove that [i32_id] behaves like the identity on positive inputs -/ theorem i32_id_spec (x : I32) (h : 0 ≤ x.val) : - ∃ y, i32_id x = ret y ∧ x.val = y.val := by + ∃ y, i32_id x = ok y ∧ x.val = y.val := by rw [i32_id] if hx : x = 0#i32 then simp_all -- cgit v1.2.3