From 5e38184af1b99a307271f738329cd96cb364fc1d Mon Sep 17 00:00:00 2001 From: Son Ho Date: Fri, 4 Aug 2023 22:31:48 +0200 Subject: Update the Makefile and regenerate the test files --- tests/coq/misc/Primitives.v | 55 ++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 49 insertions(+), 6 deletions(-) (limited to 'tests/coq/misc/Primitives.v') diff --git a/tests/coq/misc/Primitives.v b/tests/coq/misc/Primitives.v index ae961ac2..71a2d9c3 100644 --- a/tests/coq/misc/Primitives.v +++ b/tests/coq/misc/Primitives.v @@ -394,13 +394,15 @@ Notation "x s< y" := (scalar_ltb x y) (at level 80) : Primitives_scope. Notation "x s>= y" := (scalar_geb x y) (at level 80) : Primitives_scope. Notation "x s> y" := (scalar_gtb x y) (at level 80) : Primitives_scope. -(*** Vectors *) - -Definition vec T := { l: list T | Z.of_nat (length l) <= usize_max }. +(*** Range *) +Record range (T : Type) := mk_range { + start: T; + end_: T; +}. +Arguments mk_range {_}. -Definition vec_to_list {T: Type} (v: vec T) : list T := proj1_sig v. - -Definition vec_length {T: Type} (v: vec T) : Z := Z.of_nat (length (vec_to_list v)). +(*** Arrays *) +Definition array T (n : usize) := { l: list T | Z.of_nat (length l) = to_Z n}. Lemma le_0_usize_max : 0 <= usize_max. Proof. @@ -409,6 +411,47 @@ Proof. lia. Qed. +Lemma eqb_imp_eq (x y : Z) : Z.eqb x y = true -> x = y. +Proof. + lia. +Qed. + +(* TODO: finish the definitions *) +Axiom mk_array : forall (T : Type) (n : usize) (l : list T), array T n. + +Axiom array_index_shared : forall (T : Type) (n : usize) (x : array T n) (i : usize), result T. +Axiom array_index_mut_fwd : forall (T : Type) (n : usize) (x : array T n) (i : usize), result T. +Axiom array_index_mut_back : forall (T : Type) (n : usize) (x : array T n) (i : usize) (nx : T), result (array T n). + +(*** Slice *) +Definition slice T := { l: list T | Z.of_nat (length l) <= usize_max}. + +Axiom slice_len : forall (T : Type) (s : slice T), usize. +Axiom slice_index_shared : forall (T : Type) (x : slice T) (i : usize), result T. +Axiom slice_index_mut_fwd : forall (T : Type) (x : slice T) (i : usize), result T. +Axiom slice_index_mut_back : forall (T : Type) (x : slice T) (i : usize) (nx : T), result (slice T). + +(*** Subslices *) + +Axiom array_to_slice_shared : forall (T : Type) (n : usize) (x : array T n), result (slice T). +Axiom array_to_slice_mut_fwd : forall (T : Type) (n : usize) (x : array T n), result (slice T). +Axiom array_to_slice_mut_back : forall (T : Type) (n : usize) (x : array T n) (s : slice T), result (array T n). + +Axiom array_subslice_shared: forall (T : Type) (n : usize) (x : array T n) (r : range usize), result (slice T). +Axiom array_subslice_mut_fwd: forall (T : Type) (n : usize) (x : array T n) (r : range usize), result (slice T). +Axiom array_subslice_mut_back: forall (T : Type) (n : usize) (x : array T n) (r : range usize) (ns : slice T), result (array T n). +Axiom slice_subslice_shared: forall (T : Type) (x : slice T) (r : range usize), result (slice T). +Axiom slice_subslice_mut_fwd: forall (T : Type) (x : slice T) (r : range usize), result (slice T). +Axiom slice_subslice_mut_back: forall (T : Type) (x : slice T) (r : range usize) (ns : slice T), result (slice T). + +(*** Vectors *) + +Definition vec T := { l: list T | Z.of_nat (length l) <= usize_max }. + +Definition vec_to_list {T: Type} (v: vec T) : list T := proj1_sig v. + +Definition vec_length {T: Type} (v: vec T) : Z := Z.of_nat (length (vec_to_list v)). + Definition vec_new (T: Type) : vec T := (exist _ [] le_0_usize_max). Lemma vec_len_in_usize {T} (v: vec T) : usize_min <= vec_length v <= usize_max. -- cgit v1.2.3