From 569513587ac168683c40cef03c1e3a74579e6e44 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Sun, 5 Feb 2023 15:15:42 +0100 Subject: Rename primitives.lean to Primitives.lean --- backends/lean/Primitives.lean | 373 ++++++++++++++++++++++++++++++++++++++++++ backends/lean/primitives.lean | 373 ------------------------------------------ 2 files changed, 373 insertions(+), 373 deletions(-) create mode 100644 backends/lean/Primitives.lean delete mode 100644 backends/lean/primitives.lean (limited to 'backends/lean') diff --git a/backends/lean/Primitives.lean b/backends/lean/Primitives.lean new file mode 100644 index 00000000..79958d94 --- /dev/null +++ b/backends/lean/Primitives.lean @@ -0,0 +1,373 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd + +------------- +-- PRELUDE -- +------------- + +-- Results & monadic combinators + +-- TODO: use syntactic conventions and capitalize error, result, etc. + +inductive error where + | assertionFailure: error + | integerOverflow: error + | arrayOutOfBounds: error + | maximumSizeExceeded: error + | panic: error +deriving Repr, BEq + +open error + +inductive result (α : Type u) where + | ret (v: α): result α + | fail (e: error): result α +deriving Repr, BEq + +open result + +/- HELPERS -/ + +-- TODO: is there automated syntax for these discriminators? +def is_ret {α: Type} (r: result α): Bool := + match r with + | result.ret _ => true + | result.fail _ => false + +def massert (b:Bool) : result Unit := + if b then .ret () else fail assertionFailure + +def eval_global {α: Type} (x: result α) (_: is_ret x): α := + match x with + | result.fail _ => by contradiction + | result.ret x => x + +/- DO-DSL SUPPORT -/ + +def bind (x: result α) (f: α -> result β) : result β := + match x with + | ret v => f v + | fail v => fail v + +-- Allows using result in do-blocks +instance : Bind result where + bind := bind + +-- Allows using return x in do-blocks +instance : Pure result where + pure := fun x => ret x + +/- CUSTOM-DSL SUPPORT -/ + +-- Let-binding the result of a monadic operation is oftentimes not sufficient, +-- because we may need a hypothesis for equational reasoning in the scope. We +-- rely on subtype, and a custom let-binding operator, in effect recreating our +-- own variant of the do-dsl + +def result.attach : (o : result α) → result { x : α // o = ret x } + | .ret x => .ret ⟨x, rfl⟩ + | .fail e => .fail e + +macro "let" h:ident " : " e:term " <-- " f:term : doElem => + `(doElem| let ⟨$e, $h⟩ ← result.attach $f) + +-- Silly example of the kind of reasoning that this notation enables +#eval do + let h: y <-- .ret (0: Nat) + let _: y = 0 := by cases h; decide + let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ + .ret r + +---------------------- +-- MACHINE INTEGERS -- +---------------------- + +-- NOTE: we reuse the USize type from prelude.lean, because at least we know +-- it's defined in an idiomatic style that is going to make proofs easy (and +-- indeed, several proofs here are much shortened compared to Aymeric's earlier +-- attempt.) This is not stricto sensu the *correct* thing to do, because one +-- can query at run-time the value of USize, which we do *not* want to do (we +-- don't know what target we'll run on!), but when the day comes, we'll just +-- define our own USize. +-- ANOTHER NOTE: there is USize.sub but it has wraparound semantics, which is +-- not something we want to define (I think), so we use our own monadic sub (but +-- is it in line with the Rust behavior?) + +-- TODO: I am somewhat under the impression that subtraction is defined as a +-- total function over nats...? the hypothesis in the if condition is not used +-- in the then-branch which confuses me quite a bit + +-- TODO: add a refinement for the result (just like vec_push_back below) that +-- explains that the toNat of the result (in the case of success) is the sub of +-- the toNat of the arguments (i.e. intrinsic specification) +-- ... do we want intrinsic specifications for the builtins? that might require +-- some careful type annotations in the monadic notation for clients, but may +-- give us more "for free" + +-- Note from Chris Bailey: "If there's more than one salient property of your +-- definition then the subtyping strategy might get messy, and the property part +-- of a subtype is less discoverable by the simplifier or tactics like +-- library_search." Try to settle this with a Lean expert on what is the most +-- productive way to go about this? + +-- One needs to perform a little bit of reasoning in order to successfully +-- inject constants into USize, so we provide a general-purpose macro + +syntax "intlit" : tactic + +macro_rules + | `(tactic| intlit) => `(tactic| + match USize.size, usize_size_eq with + | _, Or.inl rfl => decide + | _, Or.inr rfl => decide) + +-- This is how the macro is expected to be used +#eval USize.ofNatCore 0 (by intlit) + +-- Also works for other integer types (at the expense of a needless disjunction) +#eval UInt32.ofNatCore 0 (by intlit) + +-- Further thoughts: look at what has been done here: +-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean +-- and +-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean +-- which both contain a fair amount of reasoning already! +def USize.checked_sub (n: USize) (m: USize): result USize := + -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? + if n >= m then + let n' := USize.toNat n + let m' := USize.toNat n + let r := USize.ofNatCore (n' - m') (by + have h: n' - m' <= n' := by + apply Nat.sub_le_of_le_add + case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left + apply Nat.lt_of_le_of_lt h + apply n.val.isLt + ) + return r + else + fail integerOverflow + +def USize.checked_add (n: USize) (m: USize): result USize := + if h: n.val.val + m.val.val <= 4294967295 then + .ret ⟨ n.val.val + m.val.val, by + have h': 4294967295 < USize.size := by intlit + apply Nat.lt_of_le_of_lt h h' + ⟩ + else if h: n.val + m.val < USize.size then + .ret ⟨ n.val + m.val, h ⟩ + else + .fail integerOverflow + +def USize.checked_rem (n: USize) (m: USize): result USize := + if h: m > 0 then + .ret ⟨ n.val % m.val, by + have h1: ↑m.val < USize.size := m.val.isLt + have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h + apply Nat.lt_trans h2 h1 + ⟩ + else + .fail integerOverflow + +def USize.checked_mul (n: USize) (m: USize): result USize := + if h: n.val.val * m.val.val <= 4294967295 then + .ret ⟨ n.val.val * m.val.val, by + have h': 4294967295 < USize.size := by intlit + apply Nat.lt_of_le_of_lt h h' + ⟩ + else if h: n.val * m.val < USize.size then + .ret ⟨ n.val * m.val, h ⟩ + else + .fail integerOverflow + +def USize.checked_div (n: USize) (m: USize): result USize := + if m > 0 then + .ret ⟨ n.val / m.val, by + have h1: ↑n.val < USize.size := n.val.isLt + have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val + apply Nat.lt_of_le_of_lt h2 h1 + ⟩ + else + .fail integerOverflow + +class MachineInteger (t: Type) where + size: Nat + val: t -> Fin size + ofNatCore: (n:Nat) -> LT.lt n size -> t + +set_option hygiene false in +run_cmd + for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do + Lean.Elab.Command.elabCommand (← `( + namespace $typeName + instance: MachineInteger $typeName where + size := size + val := val + ofNatCore := ofNatCore + end $typeName + )) + +def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst := + if h: MachineInteger.val x < MachineInteger.size dst then + .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) + else + .fail integerOverflow + + +-- Test behavior... +#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 + +#eval USize.checked_sub 20 10 +-- NOTE: compare with concrete behavior here, which I do not think we want +#eval USize.sub 0 1 +#eval UInt8.add 255 255 + +------------- +-- VECTORS -- +------------- + +-- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) +-- rather than maximum values (usize_max). +def vec (α : Type u) := { l : List α // List.length l < USize.size } + +def vec_new (α : Type u): vec α := ⟨ [], by { + match USize.size, usize_size_eq with + | _, Or.inl rfl => simp + | _, Or.inr rfl => simp + } ⟩ + +#check vec_new + +def vec_len (α : Type u) (v : vec α) : USize := + let ⟨ v, l ⟩ := v + USize.ofNatCore (List.length v) l + +#eval vec_len Nat (vec_new Nat) + +def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := () + +-- NOTE: old version trying to use a subtype notation, but probably better to +-- leave result elimination to auxiliary lemmas with suitable preconditions +-- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one +-- make the proof work in that case? Probably need to import tactics from +-- mathlib to deal with inequalities... would love to see an example. +def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // + match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} + := + if h : List.length v.val + 1 < USize.size then + ⟨ return ⟨List.concat v.val x, + by + rw [List.length_concat] + assumption + ⟩, by simp ⟩ + else + ⟨ fail maximumSizeExceeded, by simp ⟩ + +#eval do + -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with + -- fields val and property. However, Lean's elaborator can automatically + -- select the `val` field if the context provides a type annotation. We + -- annotate `x`, which relieves us of having to write `.val` on the right-hand + -- side of the monadic let. + let v := vec_new Nat + let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here? + -- TODO: strengthen post-condition above and do a demo to show that we can + -- safely eliminate the `fail` case + return (vec_len Nat x) + +def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) + := + if h : List.length v.val + 1 <= 4294967295 then + return ⟨ List.concat v.val x, + by + rw [List.length_concat] + have h': 4294967295 < USize.size := by intlit + apply Nat.lt_of_le_of_lt h h' + ⟩ + else if h: List.length v.val + 1 < USize.size then + return ⟨List.concat v.val x, + by + rw [List.length_concat] + assumption + ⟩ + else + fail maximumSizeExceeded + +def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := + if i.val < List.length v.val then + .ret ⟨ List.set v.val i.val x, by + have h: List.length v.val < USize.size := v.property + rewrite [ List.length_set v.val i.val x ] + assumption + ⟩ + else + .fail arrayOutOfBounds + +def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α := + if h: i.val < List.length v.val then + .ret (List.get v.val ⟨i.val, h⟩) + else + .fail arrayOutOfBounds + +def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α := + if h: i.val < List.length v.val then + .ret (List.get v.val ⟨i.val, h⟩) + else + .fail arrayOutOfBounds + +def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := + if i.val < List.length v.val then + .ret ⟨ List.set v.val i.val x, by + have h: List.length v.val < USize.size := v.property + rewrite [ List.length_set v.val i.val x ] + assumption + ⟩ + else + .fail arrayOutOfBounds + +---------- +-- MISC -- +---------- + +def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := + x + +def mem_replace_back (a : Type) (_ : a) (y : a) : a := + y + +-------------------- +-- ASSERT COMMAND -- +-------------------- + +open Lean Elab Command Term Meta + +syntax (name := assert) "#assert" term: command + +@[command_elab assert] +def assertImpl : CommandElab := fun (_stx: Syntax) => do + logInfo "Reducing and asserting: " + logInfo _stx[1] + runTermElabM (fun _ => do + let e ← Term.elabTerm _stx[1] none + logInfo (Expr.dbgToString e) + -- How to evaluate the term and compare the result to true? + pure ()) + -- logInfo (Expr.dbgToString (``true)) + -- throwError "TODO: assert" + +#eval 2 == 2 +#assert (2 == 2) diff --git a/backends/lean/primitives.lean b/backends/lean/primitives.lean deleted file mode 100644 index 79958d94..00000000 --- a/backends/lean/primitives.lean +++ /dev/null @@ -1,373 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - --- TODO: use syntactic conventions and capitalize error, result, etc. - -inductive error where - | assertionFailure: error - | integerOverflow: error - | arrayOutOfBounds: error - | maximumSizeExceeded: error - | panic: error -deriving Repr, BEq - -open error - -inductive result (α : Type u) where - | ret (v: α): result α - | fail (e: error): result α -deriving Repr, BEq - -open result - -/- HELPERS -/ - --- TODO: is there automated syntax for these discriminators? -def is_ret {α: Type} (r: result α): Bool := - match r with - | result.ret _ => true - | result.fail _ => false - -def massert (b:Bool) : result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: result α) (_: is_ret x): α := - match x with - | result.fail _ => by contradiction - | result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: result α) (f: α -> result β) : result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using result in do-blocks -instance : Bind result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def result.attach : (o : result α) → result { x : α // o = ret x } - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" h:ident " : " e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, $h⟩ ← result.attach $f) - --- Silly example of the kind of reasoning that this notation enables -#eval do - let h: y <-- .ret (0: Nat) - let _: y = 0 := by cases h; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- NOTE: we reuse the USize type from prelude.lean, because at least we know --- it's defined in an idiomatic style that is going to make proofs easy (and --- indeed, several proofs here are much shortened compared to Aymeric's earlier --- attempt.) This is not stricto sensu the *correct* thing to do, because one --- can query at run-time the value of USize, which we do *not* want to do (we --- don't know what target we'll run on!), but when the day comes, we'll just --- define our own USize. --- ANOTHER NOTE: there is USize.sub but it has wraparound semantics, which is --- not something we want to define (I think), so we use our own monadic sub (but --- is it in line with the Rust behavior?) - --- TODO: I am somewhat under the impression that subtraction is defined as a --- total function over nats...? the hypothesis in the if condition is not used --- in the then-branch which confuses me quite a bit - --- TODO: add a refinement for the result (just like vec_push_back below) that --- explains that the toNat of the result (in the case of success) is the sub of --- the toNat of the arguments (i.e. intrinsic specification) --- ... do we want intrinsic specifications for the builtins? that might require --- some careful type annotations in the monadic notation for clients, but may --- give us more "for free" - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." Try to settle this with a Lean expert on what is the most --- productive way to go about this? - --- One needs to perform a little bit of reasoning in order to successfully --- inject constants into USize, so we provide a general-purpose macro - -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| - match USize.size, usize_size_eq with - | _, Or.inl rfl => decide - | _, Or.inr rfl => decide) - --- This is how the macro is expected to be used -#eval USize.ofNatCore 0 (by intlit) - --- Also works for other integer types (at the expense of a needless disjunction) -#eval UInt32.ofNatCore 0 (by intlit) - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def USize.checked_sub (n: USize) (m: USize): result USize := - -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? - if n >= m then - let n' := USize.toNat n - let m' := USize.toNat n - let r := USize.ofNatCore (n' - m') (by - have h: n' - m' <= n' := by - apply Nat.sub_le_of_le_add - case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left - apply Nat.lt_of_le_of_lt h - apply n.val.isLt - ) - return r - else - fail integerOverflow - -def USize.checked_add (n: USize) (m: USize): result USize := - if h: n.val.val + m.val.val <= 4294967295 then - .ret ⟨ n.val.val + m.val.val, by - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: n.val + m.val < USize.size then - .ret ⟨ n.val + m.val, h ⟩ - else - .fail integerOverflow - -def USize.checked_rem (n: USize) (m: USize): result USize := - if h: m > 0 then - .ret ⟨ n.val % m.val, by - have h1: ↑m.val < USize.size := m.val.isLt - have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h - apply Nat.lt_trans h2 h1 - ⟩ - else - .fail integerOverflow - -def USize.checked_mul (n: USize) (m: USize): result USize := - if h: n.val.val * m.val.val <= 4294967295 then - .ret ⟨ n.val.val * m.val.val, by - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: n.val * m.val < USize.size then - .ret ⟨ n.val * m.val, h ⟩ - else - .fail integerOverflow - -def USize.checked_div (n: USize) (m: USize): result USize := - if m > 0 then - .ret ⟨ n.val / m.val, by - have h1: ↑n.val < USize.size := n.val.isLt - have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val - apply Nat.lt_of_le_of_lt h2 h1 - ⟩ - else - .fail integerOverflow - -class MachineInteger (t: Type) where - size: Nat - val: t -> Fin size - ofNatCore: (n:Nat) -> LT.lt n size -> t - -set_option hygiene false in -run_cmd - for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do - Lean.Elab.Command.elabCommand (← `( - namespace $typeName - instance: MachineInteger $typeName where - size := size - val := val - ofNatCore := ofNatCore - end $typeName - )) - -def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst := - if h: MachineInteger.val x < MachineInteger.size dst then - .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) - else - .fail integerOverflow - - --- Test behavior... -#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 - -#eval USize.checked_sub 20 10 --- NOTE: compare with concrete behavior here, which I do not think we want -#eval USize.sub 0 1 -#eval UInt8.add 255 255 - -------------- --- VECTORS -- -------------- - --- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) --- rather than maximum values (usize_max). -def vec (α : Type u) := { l : List α // List.length l < USize.size } - -def vec_new (α : Type u): vec α := ⟨ [], by { - match USize.size, usize_size_eq with - | _, Or.inl rfl => simp - | _, Or.inr rfl => simp - } ⟩ - -#check vec_new - -def vec_len (α : Type u) (v : vec α) : USize := - let ⟨ v, l ⟩ := v - USize.ofNatCore (List.length v) l - -#eval vec_len Nat (vec_new Nat) - -def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := () - --- NOTE: old version trying to use a subtype notation, but probably better to --- leave result elimination to auxiliary lemmas with suitable preconditions --- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one --- make the proof work in that case? Probably need to import tactics from --- mathlib to deal with inequalities... would love to see an example. -def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // - match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} - := - if h : List.length v.val + 1 < USize.size then - ⟨ return ⟨List.concat v.val x, - by - rw [List.length_concat] - assumption - ⟩, by simp ⟩ - else - ⟨ fail maximumSizeExceeded, by simp ⟩ - -#eval do - -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with - -- fields val and property. However, Lean's elaborator can automatically - -- select the `val` field if the context provides a type annotation. We - -- annotate `x`, which relieves us of having to write `.val` on the right-hand - -- side of the monadic let. - let v := vec_new Nat - let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here? - -- TODO: strengthen post-condition above and do a demo to show that we can - -- safely eliminate the `fail` case - return (vec_len Nat x) - -def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) - := - if h : List.length v.val + 1 <= 4294967295 then - return ⟨ List.concat v.val x, - by - rw [List.length_concat] - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: List.length v.val + 1 < USize.size then - return ⟨List.concat v.val x, - by - rw [List.length_concat] - assumption - ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := - if i.val < List.length v.val then - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val < USize.size := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α := - if h: i.val < List.length v.val then - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α := - if h: i.val < List.length v.val then - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := - if i.val < List.length v.val then - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val < USize.size := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -def assertImpl : CommandElab := fun (_stx: Syntax) => do - logInfo "Reducing and asserting: " - logInfo _stx[1] - runTermElabM (fun _ => do - let e ← Term.elabTerm _stx[1] none - logInfo (Expr.dbgToString e) - -- How to evaluate the term and compare the result to true? - pure ()) - -- logInfo (Expr.dbgToString (``true)) - -- throwError "TODO: assert" - -#eval 2 == 2 -#assert (2 == 2) -- cgit v1.2.3