From 0a62cf3f7d58b31c75344172bad1032e14a4082f Mon Sep 17 00:00:00 2001 From: Son Ho Date: Tue, 27 Jun 2023 10:52:07 +0200 Subject: Finish the proofs which use FixI --- backends/lean/Base/Diverge.lean | 199 +++++++++++++++++++++++++++++++--------- 1 file changed, 157 insertions(+), 42 deletions(-) (limited to 'backends/lean/Base') diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean index f3fa4815..76f0543a 100644 --- a/backends/lean/Base/Diverge.lean +++ b/backends/lean/Base/Diverge.lean @@ -542,6 +542,147 @@ namespace FixI simp [fix] conv => lhs; rw [Heq] + /- Some utilities to define the mutually recursive functions -/ + + inductive Funs : List (Type u) → List (Type u) → Type (u + 1) := + | Nil : Funs [] [] + | Cons {ity oty : Type u} {itys otys : List (Type u)} + (f : ity → Result oty) (tl : Funs itys otys) : Funs (ity :: itys) (oty :: otys) + + theorem Funs.length_eq {itys otys : List (Type)} (fl : Funs itys otys) : + itys.length = otys.length := + match fl with + | .Nil => by simp + | .Cons f tl => + have h:= Funs.length_eq tl + by simp [h] + + @[simp] def Funs.cast_fin {itys otys : List (Type)} + (fl : Funs itys otys) (i : Fin itys.length) : Fin otys.length := + ⟨ i.val, by have h:= fl.length_eq; have h1:= i.isLt; simp_all ⟩ + + def get_fun {itys otys : List (Type)} (fl : Funs itys otys) : + (i : Fin itys.length) → itys.get i → Result (otys.get (fl.cast_fin i)) := + match fl with + | .Nil => λ i => by have h:= i.isLt; simp at h + | @Funs.Cons ity oty itys1 otys1 f tl => + λ i => + if h: i.val = 0 then + Eq.mp (by cases i; simp_all [List.get]) f + else + let j := i.val - 1 + have Hj: j < itys1.length := by + have Hi := i.isLt + simp at Hi + revert Hi + cases Heq: i.val <;> simp_all + simp_arith + let j: Fin itys1.length := ⟨ j, Hj ⟩ + Eq.mp + (by + cases Heq: i; rename_i val isLt; + cases Heq': j; rename_i val' isLt; + cases val <;> simp_all [List.get]) + (get_fun tl j) + + + -- TODO: move + theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by + -- Damn, those proofs on natural numbers are hard - I wish Omega was in mathlib4... + simp [Nat.add_one_le_iff] + simp [Nat.lt_iff_le_and_ne] + simp_all + + def for_all_fin_aux {n : Nat} (f : Fin n → Prop) (m : Nat) (h : m ≤ n) : Prop := + if heq: m = n then True + else + f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧ + for_all_fin_aux f (m + 1) (by simp_all [add_one_le_iff_le_ne]) + termination_by for_all_fin_aux n _ m h => n - m + decreasing_by + simp_wf + apply Nat.sub_add_lt_sub <;> simp_all + simp_all [add_one_le_iff_le_ne] + + def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp) + + theorem for_all_fin_aux_imp_forall {n : Nat} (f : Fin n → Prop) (m : Nat) : + (h : m ≤ n) → + for_all_fin_aux f m h → ∀ i, m ≤ i.val → f i + := by + generalize h: (n - m) = k + revert m + induction k + case zero => + simp_all + intro m h1 h2 + have h: n = m := by + linarith + unfold for_all_fin_aux; simp_all + simp_all + -- There is no i s.t. m ≤ i + intro i h3; cases i; simp_all + linarith + case succ k hi => + simp_all + intro m hk hmn + intro hf i hmi + have hne: m ≠ n := by + have hineq := Nat.lt_of_sub_eq_succ hk + linarith + -- m = i? + if heq: m = i then + -- Yes: simply use the `for_all_fin_aux` hyp + unfold for_all_fin_aux at hf + simp_all + tauto + else + -- No: use the induction hypothesis + have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne] + have hineq: m + 1 ≤ n := by + have hineq := Nat.lt_of_sub_eq_succ hk + simp [*, Nat.add_one_le_iff] + have heq1: n - (m + 1) = k := by + -- TODO: very annoying arithmetic proof + simp [Nat.sub_eq_iff_eq_add hineq] + have hineq1: m ≤ n := by linarith + simp [Nat.sub_eq_iff_eq_add hineq1] at hk + simp_arith [hk] + have hi := hi (m + 1) heq1 hineq + apply hi <;> simp_all + . unfold for_all_fin_aux at hf + simp_all + . simp_all [add_one_le_iff_le_ne] + + theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) : + for_all_fin f → ∀ i, f i + := by + intro Hf i + apply for_all_fin_aux_imp_forall <;> try assumption + simp + + /- Automating the proofs -/ + @[simp] theorem is_valid_p_same + (k : ((i:id) → a i → Result (b i)) → (i:id) → a i → Result (b i)) (x : Result c) : + is_valid_p k (λ _ => x) := by + simp [is_valid_p, k_to_gen, e_to_gen] + + @[simp] theorem is_valid_p_rec + (k : ((i:id) → a i → Result (b i)) → (i:id) → a i → Result (b i)) (i : id) (x : a i) : + is_valid_p k (λ k => k i x) := by + simp [is_valid_p, k_to_gen, e_to_gen, kk_to_gen, kk_of_gen] + + theorem is_valid_p_bind + {{k : ((i:id) → a i → Result (b i)) → (i:id) → a i → Result (b i)}} + {{g : ((i:id) → a i → Result (b i)) → Result c}} + {{h : c → ((i:id) → a i → Result (b i)) → Result d}} + (Hgvalid : is_valid_p k g) + (Hhvalid : ∀ y, is_valid_p k (h y)) : + is_valid_p k (λ k => do let y ← g k; h y k) := by + apply Fix.is_valid_p_bind + . apply Hgvalid + . apply Hhvalid + end FixI namespace Ex1 @@ -768,55 +909,29 @@ namespace Ex4 let b ← k 0 (i - 1) .ret b - inductive Funs : List (Type u) → List (Type u) → Type (u + 1) := - | Nil : Funs [] [] - | Cons {ity oty : Type u} {itys otys : List (Type u)} - (f : ity → Result oty) (tl : Funs itys otys) : Funs (ity :: itys) (oty :: otys) - - theorem Funs.length_eq {itys otys : List (Type)} (fl : Funs itys otys) : - itys.length = otys.length := - match fl with - | .Nil => by simp - | .Cons f tl => - have h:= Funs.length_eq tl - by simp [h] - - @[simp] def Funs.cast_fin {itys otys : List (Type)} - (fl : Funs itys otys) (i : Fin itys.length) : Fin otys.length := - ⟨ i.val, by have h:= fl.length_eq; have h1:= i.isLt; simp_all ⟩ - @[simp] def bodies (k : (i : Fin 2) → input_ty i → Result (output_ty i)) : Funs [Int, Int] [Bool, Bool] := Funs.Cons (is_even_body k) (Funs.Cons (is_odd_body k) Funs.Nil) - @[simp] def get_fun {itys otys : List (Type)} (fl : Funs itys otys) : - (i : Fin itys.length) → itys.get i → Result (otys.get (fl.cast_fin i)) := - match fl with - | .Nil => λ i => by have h:= i.isLt; simp at h - | @Funs.Cons ity oty itys1 otys1 f tl => - λ i => - if h: i.val = 0 then - Eq.mp (by cases i; simp_all [List.get]) f - else - let j := i.val - 1 - have Hj: j < itys1.length := by - have Hi := i.isLt - simp at Hi - revert Hi - cases Heq: i.val <;> simp_all - simp_arith - let j: Fin itys1.length := ⟨ j, Hj ⟩ - Eq.mp - (by - cases Heq: i; rename_i val isLt; - cases Heq': j; rename_i val' isLt; - cases val <;> simp_all [List.get]) - (get_fun tl j) - def body (k : (i : Fin 2) → input_ty i → Result (output_ty i)) (i: Fin 2) : input_ty i → Result (output_ty i) := get_fun (bodies k) i - theorem body_is_valid : is_valid body := by sorry + theorem body_is_valid : is_valid body := by + -- Split the proof into proofs of validity of the individual bodies + rw [is_valid] + simp [body] + intro k + apply for_all_fin_imp_forall + simp [for_all_fin] + repeat (unfold for_all_fin_aux; simp) + simp [get_fun] + (repeat (apply And.intro)) <;> intro x <;> simp at x <;> + simp [is_even_body, is_odd_body] + -- Prove the validity of the individual bodies + . split <;> simp + apply is_valid_p_bind <;> simp + . split <;> simp + apply is_valid_p_bind <;> simp theorem body_fix_eq : fix body = body (fix body) := is_valid_fix_fixed_eq body_is_valid -- cgit v1.2.3