From b3dd78ff4c8785b6ff9bce9927df90f8c78a9109 Mon Sep 17 00:00:00 2001 From: Son Ho Date: Thu, 13 Jun 2024 22:04:13 +0200 Subject: Update Lean to v4.9.0-rc1 --- backends/lean/Base/IList/IList.lean | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'backends/lean/Base/IList') diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index ca5ee266..a1897191 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -1,7 +1,6 @@ /- Complementary list functions and lemmas which operate on integers rather than natural numbers. -/ -import Std.Data.Int.Lemmas import Base.Arith import Base.Utils @@ -17,7 +16,7 @@ def len (ls : List α) : Int := theorem len_pos : 0 ≤ (ls : List α).len := by induction ls <;> simp [*] - linarith + omega instance (a : Type u) : Arith.HasIntProp (List a) where prop_ty := λ ls => 0 ≤ ls.len @@ -169,6 +168,7 @@ theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : have hl : l.toNat = .succ (l.toNat - 1) := by cases hl: l.toNat <;> simp_all conv => rhs; rw[hl] + rfl termination_by l.toNat decreasing_by int_decr_tac @@ -277,12 +277,12 @@ open Arith in if heq: i = 0 then simp [*] at * have := tl.len_pos - linarith + omega else have : 0 < i := by int_tac simp [*] apply hi - linarith + omega theorem idrop_len_le (i : Int) (ls : List α) : (ls.idrop i).len ≤ ls.len := match ls with @@ -291,13 +291,13 @@ theorem idrop_len_le (i : Int) (ls : List α) : (ls.idrop i).len ≤ ls.len := if h: i = 0 then by simp [*] else have := idrop_len_le (i - 1) tl - by simp [*]; linarith + by simp [*]; omega @[simp] theorem idrop_len (i : Int) (ls : List α) (_ : 0 ≤ i) (_ : i ≤ ls.len) : (ls.idrop i).len = ls.len - i := match ls with - | [] => by simp_all; linarith + | [] => by simp_all; omega | hd :: tl => if h: i = 0 then by simp [*] else -- cgit v1.2.3